2 research outputs found

    Microwave microstrip resonator measurements of Y1Ba2Cu3O(7-x) and Bi2Sr2Ca1Cu2O(8-y) thin films

    Get PDF
    Radio frequency (RF) surface resistance measurement experiments on high T(sub c) thin films were performed. The method uses a microstrip resonator comprising a top gold conductor strip, an alumina dielectric layer, and a separate superconductivity ground plane. The surface resistance of the superconducting ground plane can be determined, with reference to a gold calibration standard, from the measured quality factor of the half-wave resonator. Initial results near 7 GHz over the temperature range from 25 to 300 K are presented for YBa2Cu3O(7-x) and Bi2Sr2CaCu2O(8-y) thin film samples deposited by an electron beam flash evaporation process. The RF surface resistance at 25 K for both materials in these samples was found to be near 25 milliohms

    Ceramic nitride/metal coatings with enhanced fracture toughness and fatigue resistance using a multiscalar laminate architecture

    No full text
    Ceramic coatings can provide benefits such as improved wear resistance, reduced friction, and be chemical and biological corrosion barriers in various biomedical applications. However long-term issues of film cracking, particle generation, or delamination must be addressed, while achieving decades-long coating lifetimes. Instead of brittle, superhard coatings, softer but tougher coatings achieved with multiscalar, laminate architectures may meet these requirements. Layers of Cr and CrN were combined in multi- and nanolayer structures, and compared to monolayer films. The multiscalar coatings had hardness values lying between the pure Cr and CrN, but higher fracture toughness than the monolayer films
    corecore