15 research outputs found

    SIRM 2017

    Get PDF
    This volume contains selected papers presented at the 12th International Conference on vibrations in rotating machines, SIRM, which took place February 15-17, 2017 at the campus of the Graz University of Technology. By all meaningful measures, SIRM was a great success, attracting about 120 participants (ranging from senior colleagues to graduate students) from 14 countries. Latest trends in theoretical research, development, design and machine maintenance have been discussed between machine manufacturers, machine operators and scientific representatives in the field of rotor dynamics. SIRM 2017 included thematic sessions on the following topics: Rotordynamics, Stability, Friction, Monitoring, Electrical Machines, Torsional Vibrations, Blade Vibrations, Balancing, Parametric Excitation, and Bearings. The papers struck an admirable balance between theory, analysis, computation and experiment, thus contributing a richly diverse set of perspectives and methods to the audience of the conference

    Simulation of Fluid Structure Inte actions by using High Order FEM and SPH

    Get PDF
    The investigation of fluid structure interactions is crucial in many areas of science and technology. This study presents a robust methodology for studying fluid structure interactions, which is characterized by high convergence behavior and is insensitive to distortion and stiffening effects. Therefore, the Smoothed Particle Hydodynamicy is coupled with the high order FEM. After various coupling methods for linear and quadratic elements from the literature have been described, a variant with higher-value approach functions is implemented. The two methods can be meshed independend without loss of accuracy. After successful validation, it is shown that only a few finite elements are necessary to obtain a convergent solution. The presented method is promising especially for thin-walled structures where significantly fewer degrees of freedom are required than for linear elements

    A study on harmonic excitation based experimental characterization of damping materials for acoustic simulations

    Get PDF
    The presented study deals with the experimental characterization of damping materials for acoustic simulations with respect to the stiffness and damping in dependence of the excitation frequency, i.e.~frequency-dependent elasticity modulus.The test rigs under consideration utilize a shaker, acceleration sensors and a laser Doppler vibrometer (LDV) to measure oscillating behaviour at frequencies ranging from 20 to 2000 Hz.Suitable mounting properties of the test rigs are examined experimentally and by finite element analysis. The applicability of the gained results for acoustic simulations is investigated with results from a window test setup

    Automatic ball balancers

    No full text

    Analysis of dynamical behaviour of full-floating disk thrust bearings

    No full text
    Full-floating ring bearings are state of the art at high speed turbomachinery shafts like in turbochargers. Their main feature is an additional ring between shaft and housing leading to two fluid films in serial arrangement. Analogously, a thrust bearing with an additional separating disk between journal collar and housing can be designed. The disk is allowed to rotate freely only driven by drag torques, while it is radially supported by a short bearing against the journal. This paper addresses this kind of thrust bearing and its implementation into a transient rotor dynamic simulation by solving the Reynolds PDE online during time integration. Special attention is given to the coupling between the different fluid films of this bearing type. Finally, the differences between a coupled and an uncoupled solution are discussed

    Transient simulation of a squeeze film damped turbocharger rotor under consideration of fluid inertia and cavitation

    No full text
    Squeeze film dampers (SFDs) are commonly used in turbomachinery in order to introduce external damping, thereby reducing rotor vibrations and acoustic emissions. Since SFDs are of similar geometry as hydrodynamic bearings, the REYNOLDS equation of lubrication can be utilised to predict their dynamic behaviour. However, under certain operating conditions, SFDs can experience significant fluid inertia effects, which are neglected in the usual REYNOLDS analysis. An algorithm for the prediction of these effects on the pressure build up inside a finite-length SFD is therefore presented. For this purpose, the REYNOLDS equation is extended with a first-order perturbation in the fluid velocities to account for the local and convective inertia terms of the NAVIER-STOKES equations. Cavitation is taken into account by means of a mass conserving two-phase model. The resulting equation is then discretized using the finite volume method and solved with an LU factorization. The developed algorithm is capable of calculating the pressure field, and thereby the damping force, inside an SFD for arbitrary operating points in a time-efficient manner. It is therefore suited for integration into transient simulations of turbo machinery without the need for bearing force coefficient maps, which are usually restricted to circular centralized orbits. The capabilities of the method are demonstrated on a transient run-up simulation of a turbocharger rotor with two semi-floating bearings. It can be shown that the consideration of fluid inertia effects introduces a significant shift of the pressure field inside the SFDs, and therefore the resulting damper force vector, at high oil temperatures and high rotational speeds. The effect of fluid inertia on the kinematic behaviour of the whole system on the other hand is rather limited for the examined rotor

    Simulation of Fluid Structure Inte actions by using High Order FEM and SPH

    No full text
    The investigation of fluid structure interactions is crucial in many areas of science and technology. This study presents a robust methodology for studying fluid structure interactions, which is characterized by high convergence behavior and is insensitive to distortion and stiffening effects. Therefore, the Smoothed Particle Hydodynamicy is coupled with the high order FEM. After various coupling methods for linear and quadratic elements from the literature have been described, a variant with higher-value approach functions is implemented. The two methods can be meshed independend without loss of accuracy. After successful validation, it is shown that only a few finite elements are necessary to obtain a convergent solution. The presented method is promising especially for thin-walled structures where significantly fewer degrees of freedom are required than for linear elements

    Application of Particle Dampers on a Scaled Wind Turbine Generator to Improve Low-Frequency Vibro-Acoustic Behavior

    No full text
    The purpose of this paper is to introduce a honeycomb damping plate (HCDP) concept based on the particle damping technique to reduce the low-frequency vibration response of wind turbine generators. The HCDP cells contain granular materials and are mounted at different positions on the generator to reduce the transmission of vibrations from stator ring to stator arm. To investigate the efficiency of the HCDP concept in the laboratory, a small-scale replica inspired by the original wind turbine generator is used as reference geometry. The efficiency of the vibration attenuation by using the HCDP concept is experimentally investigated with the help of a laser scanning vibrometer device. In this contribution, the influence of four different granular materials on the vibration attenuation is experimentally investigated. Furthermore, the influence of HCDP positioning on the transmission path damping is analyzed. Apart from this, the effect of single-unit (SU) and multi-unit (MU) HCDP on the frequency response of the generator is also studied. The experimental approach in this paper shows good damping properties of the HCDP concept for reducing the vibration amplitude

    Run-Up Simulation of a Semi-Floating Ring Supported Turbocharger Rotor Considering Thrust Bearing and Mass-Conserving Cavitation

    No full text
    The vibration behaviour of turbocharger rotors is influenced by the acting loads as well as by the type and arrangement of the hydrodynamic bearings and their operating condition. Due to the highly non-linear bearing behaviour, lubricant film-induced excitations can occur, which lead to sub-synchronous rotor vibrations. A significant impact on the oscillation behaviour is attributed to the pressure distribution in the hydrodynamic bearings, which is influenced by the thermo-hydrodynamic conditions and the occurrence of outgassing processes. This contribution investigates the vibration behaviour of a floating ring supported turbocharger rotor. For detailed modelling of the bearings, the Reynolds equation with mass-conserving cavitation, the three-dimensional energy equation and the heat conduction equation are solved. To examine the impact of outgassing processes and thrust bearing on the occurrence of sub-synchronous rotor vibrations separately, a variation of the bearing model is made. This includes run-up simulations considering or neglecting thrust bearings and two-phase flow in the lubrication gap. It is shown that, for a reliable prediction of sub-synchronous vibrations, both the modelling of outgassing processes in hydrodynamic bearings and the consideration of thrust bearing are necessary

    Concept of a multi sensor and freely configurable patient table for CT applications

    No full text
    Conventional computed tomography (CT) systems are encapsulated in hardware and software. Integration of further imaging modalities and sensors which can acquire prior knowledge for dose saving image acquisition and reconstruction techniques are barely possible. Within the scope of our research project, an open interface and freely configurable CT system is now being developed. The integration of further modalities and sensors into this system is a main target. A subproject deals with a multi sensor patient table, which provides additional information through integrated sensors. In particular, force sensors are installed inside the patient table to determine the patient’s mass. This value can be used to specify the required tube voltage, so that a more precise setting can be made in comparison to today‘s clinical practice. Studys show that a more precise kVp estimation can significantly reduce patient dose. Sensors for the monitoring of respiration and pulse are also integrated into the setup of the patient table. On the one hand, these are designed to encourage the patients to minimize disturbing movements and on the other hand to generate trigger signals for the examination. In addition to the sensor concept of the table, a position control system for vertical and horizontal movement of the table is integrated. The position of the table can be adjusted using different input devices so that a fast and intuitive handling of the table movement can be achieved for standard diagnostic and CT guided interventional procedures. The communication between all sensors, actors and the CT ist realized via the Robot Operating System (ROS) framework
    corecore