2,392 research outputs found
Liquid drop splashing on smooth, rough and textured surfaces
Splashing occurs when a liquid drop hits a dry solid surface at high
velocity. This paper reports experimental studies of how the splash depends on
the roughness and the texture of the surfaces as well as the viscosity of the
liquid. For smooth surfaces, there is a "corona" splash caused by the presence
of air surrounding the drop. There are several regimes that occur as the
velocity and liquid viscosity are varied. There is also a "prompt" splash that
depends on the roughness and texture of the surfaces. A measurement of the size
distribution of the ejected droplets is sensitive to the surface roughness. For
a textured surface in which pillars are arranged in a square lattice,
experiment shows that the splashing has a four-fold symmetry. The splash occurs
predominantly along the diagonal directions. In this geometry, two factors
affect splashing the most: the pillar height and spacing between pillars.Comment: 9 pages, 11 figure
Splash control of drop impacts with geometric targets
Drop impacts on solid and liquid surfaces exhibit complex dynamics due to the
competition of inertial, viscous, and capillary forces. After impact, a liquid
lamella develops and expands radially, and under certain conditions, the outer
rim breaks up into an irregular arrangement of filaments and secondary
droplets. We show experimentally that the lamella expansion and subsequent
break up of the outer rim can be controlled by length scales that are of
comparable dimension to the impacting drop diameter. Under identical impact
parameters, ie. fluid properties and impact velocity, we observe unique
splashing dynamics by varying the target cross-sectional geometry. These
behaviors include: (i) geometrically-shaped lamellae and (ii) a transition in
splashing stability, from regular to irregular splashing. We propose that
regular splashes are controlled by the azimuthal perturbations imposed by the
target cross-sectional geometry and that irregular splashes are governed by the
fastest-growing unstable Plateau-Rayleigh mode
Drop Splashing on a Dry Smooth Surface
The corona splash due to the impact of a liquid drop on a smooth dry
substrate is investigated with high speed photography. A striking phenomenon is
observed: splashing can be completely suppressed by decreasing the pressure of
the surrounding gas. The threshold pressure where a splash first occurs is
measured as a function of the impact velocity and found to scale with the
molecular weight of the gas and the viscosity of the liquid. Both experimental
scaling relations support a model in which compressible effects in the gas are
responsible for splashing in liquid solid impacts.Comment: 11 pages, 4 figure
Recommended from our members
Spall And Dynamic Yielding Of Aluminum And Aluminum Alloys At Strain Rates Of 3X10(6) S(-1)
We have explored the role that grain size, impurity particles and alloying in aluminum play in dynamic yielding and spall fracture at tensile strain rates of similar to 3x10(6) We achieved these strain rates shocking the aluminum specimens via laser ablation using the Z-Beamlet Laser at Sandia National Laboratories. The high purity aluminum and 1100 series aluminum alloy produced very different spall strengths and nearly the same yield strengths. In contrast, various grain-sized Al + 3 wt. % Mg specimens presented the lowest spall strength, but the greatest dynamic yield strength. Fracture morphology results and particle analysis are presented along with hydrodynamic simulations to put these results in context. Impurity particles appeared to play a vital role in spall fracture at these fast strain rates. Alloying elements such as Mg seem to be the dominant factor in the dynamic yield results.Mechanical Engineerin
Dynamics of grain ejection by sphere impact on a granular bed
The dynamics of grain ejection consecutive to a sphere impacting a granular
material is investigated experimentally and the variations of the
characteristics of grain ejection with the control parameters are
quantitatively studied. The time evolution of the corona formed by the ejected
grains is reported, mainly in terms of its diameter and height, and favourably
compared with a simple ballistic model. A key characteristic of the granular
corona is that the angle formed by its edge with the horizontal granular
surface remains constant during the ejection process, which again can be
reproduced by the ballistic model. The number and the kinetic energy of the
ejected grains is evaluated and allows for the calculation of an effective
restitution coefficient characterizing the complex collision process between
the impacting sphere and the fine granular target. The effective restitution
coefficient is found to be constant when varying the control parameters.Comment: 9 page
Mesenchymal stromal cells:inhibiting PDGF receptors or depleting fibronectin induces mesodermal progenitors with endothelial potential
Realizing the full therapeutic potential of mesenchymal stromal/stem cells (MSCs) awaits improved understanding of mechanisms controlling their fate. Using MSCs cultured as spheroids to recapitulate a three-dimensional cellular environment, we show that perturbing the mesenchymal regulators, platelet-derived growth factor (PDGF) receptors or fibronectin, reverts MSCs toward mesodermal progenitors with endothelial potential that can potently induce neovascularization in vivo. MSCs within untreated spheroids retain their mesenchymal spindle shape with abundant smooth muscle α-actin filaments and fibronectin-rich matrix. Inhibiting PDGF receptors or depleting fibronectin induces rounding and depletes smooth muscle α-actin expression; these cells have characteristics of mesenchymoangioblasts, with enhanced expression of mesendoderm and endoderm transcription factors, prominent upregulation of E-cadherin, and Janus kinase signaling-dependent expression of Oct4A and Nanog. PDGF receptor-inhibited spheroids also upregulate endothelial markers platelet endothelial cell adhesion molecule 1 and vascular endothelial-cadherin and secrete many angiogenic factors, and in vivo they potently stimulate neovascularization, and their MSCs integrate within functional blood vessels that are perfused by the circulation. Thus, MSC potency and vascular induction are regulated by perturbing mesenchymal fate
Vortex Matter Transition in BiSrCaCuO under Tilted Fields
Vortex phase diagram under tilted fields from the axis in
BiSrCaCuO is studied by local magnetization
hysteresis measurements using Hall probes. When the field is applied at large
angles from the axis, an anomaly () other than the well-known
peak effect () are found at fields below . The angular dependence of
the field is nonmonotonic and clearly different from that of
and depends on the oxygen content of the crystal. The results suggest existence
of a vortex matter transition under tilted fields. Possible mechanisms of the
transition are discussed.Comment: Revtex, 4 pages, some corrections are adde
GINZBURG-LANDAU THEORY OF VORTICES IN -WAVE SUPERCONDUCTORS
Ginzburg-Landau theory is used to study the properties of single vortices and
of the Abrikosov vortex lattice in a superconductor. For a single
vortex, the -wave order parameter has the expected four-lobe structure in a
ring around the core and falls off like at large distances. The
topological structure of the -wave order parameter consists of one
counter-rotating unit vortex, centered at the core, surrounded by four
symmetrically placed positive unit vortices. The Abrikosov lattice is shown to
have a triangular structure close to and an oblique structure at lower
temperatures. Comparison is made to recent neutron scattering data.Comment: 4 pages, REVTeX, 3 figures available upon reques
Evolutionary Roots of Property Rights; The Natural and Cultural Nature of Human Cooperation
Debates about the role of natural and cultural selection in the development of prosocial, antisocial and socially neutral mechanisms and behavior raise questions that touch property rights, cooperation, and conflict. For example, some researchers suggest that cooperation and prosociality evolved by natural selection (Hamilton 1964, Trivers 1971, Axelrod and Hamilton 1981, De Waal 2013, 2014), while others claim that natural selection is insufficient for the evolution of cooperation, which required in addition cultural selection (Sterelny 2013, Bowles and Gintis 2003, Seabright 2013, Norenzayan 2013). Some scholars focus on the complexity and hierarchical nature of the evolution of cooperation as involving different tools associated with lower and the higher levels of competition (Nowak 2006, Okasha 2006); others suggest that humans genetically inherited heuristics that favor prosocial behavior such as generosity, forgiveness or altruistic punishment (Ridley 1996, Bowles and Gintis 2004, Rolls 2005). We argue these mechanisms are not genetically inherited; rather, they are features inherited through cultural selection. To support this view we invoke inclusive fitness theory, which states that individuals tend to maximize their inclusive fitness, rather than maximizing group fitness. We further reject the older notion of natural group selection - as well as more recent versions (West, Mouden, Gardner 2011) – which hold that natural selection favors cooperators within a group (Wynne-Edwards 1962). For Wynne-Edwards, group selection leads to group adaptations; the survival of individuals therefore depends on the survival of the group and a sharing of resources. Individuals who do not cooperate, who are selfish, face extinction due to rapid and over-exploitation of resources
- …