177 research outputs found

    Neuromuscular study of early branching <i>Diuronotus aspetos</i> (Paucitubulatina) yields insights into the evolution of organs systems in Gastrotricha

    Get PDF
    BACKGROUND: Diuronotus is one of the most recently described genera of Paucitubulatina, one of the three major clades in Gastrotricha. Its morphology suggests that Diuronotus is an early branch of Paucitubulatina, making it a key taxon for understanding the evolution of this morphologically understudied group. Here we test its phylogenetic position employing molecular data, and provide detailed descriptions of the muscular, nervous, and ciliary systems of Diuronotus aspetos, using immunohistochemistry and confocal laser scanning microscopy. RESULTS: We confirm the proposed position of D. aspetos within Muselliferidae, and find this family to be the sister group to Xenotrichulidae. The muscular system, revealed by F-actin staining, shows a simple, but unique organization of the trunk musculature with a reduction to three pairs of longitudinal muscles and addition of up to five pairs of dorso-ventral muscles, versus the six longitudinal and two dorso-ventral pairs found in most Paucitubulatina. Using acetylated α-tubulin immunoreactivity, we describe the pharynx in detail, including new nervous structures, two pairs of sensory cilia, and a unique canal system. The central nervous system, as revealed by immunohistochemistry, shows the general pattern of Gastrotricha having a bilobed brain and a pair of ventro-longitudinal nerve cords. However, in addition are found an anterior nerve ring, several anterior longitudinal nerves, and four ventral commissures (pharyngeal, trunk, pre-anal, and terminal). Two pairs of protonephridia are documented, while other Paucitubulatina have one. Moreover, the precise arrangement of multiciliated cells is unraveled, yielding a pattern of possibly systematic importance. CONCLUSION: Several neural structures of Diuronotus resemble those found in Xenotrichula (Xenotrichulidae) and may constitute new apomorphies of Paucitubulatina, or even Gastrotricha. In order to test these new evolutionary hypotheses, comparable morphological data from other understudied gastrotrich branches and a better resolution of the basal nodes of the gastrotrich phylogeny are warranted. Nonetheless, the present study offers new insights into the evolution of organ systems and systematic importance of so-far neglected characters in Gastrotricha

    Nervous system and ciliary structures of Micrognathozoa (Gnathifera):evolutionary insight from an early branch in Spiralia

    Get PDF
    Recent studies show that Gnathifera, comprising Rotifera, Gnathostomulida and Micrognathozoa, constitute the sister group to the remaining Spiralia (containing, e.g. flatworms, segmented worms and molluscs). Therefore, a better understanding of Gnathifera is central for unravelling the evolution of the highly diverse Spiralia. Here, we describe the previously unstudied nervous system and ciliary structures of Micrognathozoa, using immunohistochemistry and confocal laser scanning microscopy. The nervous system is simple with a large brain, paired sub-esophageal ganglia, two trunk commissures, two pairs of ventral longitudinal nerves and peripheral nerves. The paired ventro-lateral nerve cords are confirmed to be a symplesiomorphy of Gnathifera (possibly even Spiralia), whereas the paired ventro-median nerves are not previously reported in Gnathifera. A pharyngeal ganglion is described for Micrognathozoa: a complex structure with two apical tufts of ciliary receptors, now shown to be shared by all Gnathifera. The ventral pattern of external ciliophores is re-described, and protonephridia with multi-ciliated collecting tubules similar to those of Rotifera are confirmed. A range of new details from a simple nervous system and complex set of ciliary structures in a microscopic metazoan are hereby unravelled. The many resemblances with Rotifera corroborate their close relationship, and shed more light on the evolution of Gnathifera

    Neural reconstruction of bone-eating <i>Osedax</i> spp. (Annelida) and evolution of the siboglinid nervous system

    Get PDF
    BACKGROUND: Bone-devouring Osedax worms were described over a decade ago from deep-sea whale falls. The gutless females (and in one species also the males) have a unique root system that penetrates the bone and nourishes them via endosymbiotic bacteria. Emerging from the bone is a cylindrical trunk, which is enclosed in a transparent tube, that generally gives rise to a plume of four palps (or tentacles). In most Osedax species, dwarf males gather in harems along the female’s trunk and the nervous system of these microscopic forms has been described in detail. Here, the nervous system of bone-eating Osedax forms are described for the first time, allowing for hypotheses on how the abberant ventral brain and nervous system of Siboglinidae may have evolved from a ganglionated nervous system with a dorsal brain, as seen in most extant annelids. RESULTS: The intraepidermal nervous systems of four female Osedax spp. and the bone-eating O. priapus male were reconstructed in detail by a combination of immunocytochemistry, CLSM, histology and TEM. They all showed a simple nervous system composed of an anterior ventral brain, connected with anteriorly directed paired palp and gonoduct nerves, and four main pairs of posteriorly directed longitudinal nerves (2 ventral, 2 ventrolateral, 2 sets of dorso-lateral, 2 dorsal). Transverse peripheral nerves surround the trunk, ovisac and root system. The nervous system of Osedax resembles that of other siboglinids, though possibly presenting additional lateral and dorsal longitudinal nerves. It differs from most Sedentaria in the presence of an intraepidermal ventral brain, rather than a subepidermal dorsal brain, and by having an intraepidermal nerve cord with several plexi and up to three main commissures along the elongated trunk, which may comprise two indistinct segments. CONCLUSIONS: Osedax shows closer neuroarchitectural resemblance to Vestimentifera + Sclerolinum (= Monilifera) than to Frenulata. The intraepidermal nervous system with widely separated nerve cords, double brain commissures, double palp nerves and other traits found in Osedax can all be traced to represent ancestral states of Siboglinidae. A broader comparison of the nervous system and body regions across Osedax and other siboglinids allows for a reinterpretation of the anterior body region in the group

    Detailed reconstruction of the nervous and muscular system of Lobatocerebridae with an evaluation of its annelid affinity

    Get PDF
    BACKGROUND: The microscopic worm group Lobatocerebridae has been regarded a ‘problematicum’, with the systematic relationship being highly debated until a recent phylogenomic study placed them within annelids (Curr Biol 25: 2000-2006, 2015). To date, a morphological comparison with other spiralian taxa lacks detailed information on the nervous and muscular system, which is here presented for Lobatocerebrum riegeri n. sp. based on immunohistochemistry and confocal laser scanning microscopy, supported by TEM and live observations. RESULTS: The musculature is organized as a grid of longitudinal muscles and transverse muscular ring complexes in the trunk. The rostrum is supplied by longitudinal muscles and only a few transverse muscles. The intraepidermal central nervous system consists of a big, multi-lobed brain, nine major nerve bundles extending anteriorly into the rostrum and two lateral and one median cord extending posteriorly to the anus, connected by five commissures. The glandular epidermis has at least three types of mucus secreting glands and one type of adhesive unicellular glands. CONCLUSIONS: No exclusive “annelid characters” could be found in the neuromuscular system of Lobatocerebridae, except for perhaps the mid-ventral nerve. However, none of the observed structures disputes its position within this group. The neuromuscular and glandular system of L. riegeri n. sp. shows similarities to those of meiofaunal annelids such as Dinophilidae and Protodrilidae, yet likewise to Gnathostomulida and catenulid Platyhelminthes, all living in the restrictive interstitial environment among sand grains. It therefore suggests an extreme evolutionary plasticity of annelid nervous and muscular architecture, previously regarded as highly conservative organ systems throughout metazoan evolution. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12862-015-0531-x) contains supplementary material, which is available to authorized users

    Two new meiofaunal species of Trilobodrilus (Dinophilidae, Annelida) from California, USA

    Get PDF
    We describe two new species of the annelid genus Trilobodrilus Remane, 1925 (Dinophilidae Verill, 1892) from an intertidal and a subtidal location in San Diego, California. These two species show morphological and molecular divergences between each other and the previously described, geographically distant species. Intertidal T. windansea sp. nov. differs from subtidal T. ellenscrippsae sp. nov. most remarkably in the number and pattern of ciliary tufts and bands on the prostomium and along the body length, besides showing ca 15% difference in gene fragments of COI and CytB. Trilobodrilus windansea sp. nov., though nesting with T. ellenscrippsae sp. nov. in the molecular phylogenetic analyses, morphologically resembles the Japanese T. itoi Kajihara, Ikoma, Yamasaki & Hiruta, 2015 most closely, but still differs from this species in the higher number of apical ciliary tufts, an additional ciliary row posterior to the second ciliary band, and by lacking a forth ciliary band and segmentally arranged lateral ciliary tufts. Trilobodrilus ellenscrippsae sp. nov. is morphologically most similar to the Japanese T. nipponicus Uchida & Okuda, 1943, but is much shorter, has more apical ciliary tufts, and less regularly arranged lateral ciliary tufts along the body. All species differ significantly in all compared gene fragments, and no obvious correlation was found between habitat and the species morphology or relationships

    Comparison of neuromuscular development in two dinophilid species (Annelida) suggests progenetic origin of <i>Dinophilus gyrociliatus</i>

    Get PDF
    BACKGROUND: Several independent meiofaunal lineages are suggested to have originated through progenesis, however, morphological support for this heterochronous process is still lacking. Progenesis is defined as an arrest of somatic development (synchronously in various organ systems) due to early maturation, resulting in adults resembling larvae or juveniles of the ancestors. Accordingly, we established a detailed neuromuscular developmental atlas of two closely related Dinophilidae using immunohistochemistry and CLSM. This allows us to test for progenesis, questioning whether i) the adult smaller, dimorphic Dinophilus gyrociliatus resembles a younger developmental stage of the larger, monomorphic D. taeniatus and whether ii) dwarf males of D. gyrociliatus resemble an early developmental stage of D. gyrociliatus females. RESULTS: Both species form longitudinal muscle bundles first, followed by circular muscles, creating a grid of body wall musculature, which is the densest in adult D. taeniatus, while the architecture in adult female D. gyrociliatus resembles that of prehatching D. taeniatus. Both species display a subepidermal ganglionated nervous system with an anterior dorsal brain and five longitudinal ventral nerve bundles with six sets of segmental commissures (associated with paired ganglia). Neural differentiation of D. taeniatus and female D. gyrociliatus commissures occurs before hatching: both species start out forming one transverse neurite bundle per segment, which are thereafter joined by additional thin bundles. Whereas D. gyrociliatus arrests its development at this stage, adult D. taeniatus condenses the thin commissures again into one thick commissural bundle per segment. Generally, D. taeniatus adults demonstrate a seemingly more organized (= segmental) pattern of serotonin-like and FMRFamide-like immunoreactive elements. The dwarf male of D. gyrociliatus displays a highly aberrant neuromuscular system, showing no close resemblance to any early developmental stage of female Dinophilus, although the onset of muscular development mirrors the early myogenesis in females. CONCLUSION: The apparent synchronous arrest of nervous and muscular development in adult female D. gyrociliatus, resembling the prehatching stage of D. taeniatus, suggests that D. gyrociliatus have originated through progenesis. The synchrony in arrest of three organ systems, which show opposing reduction and addition of elements, presents one of the morphologically best-argued cases of progenesis within Spiralia

    The central nervous system of Oweniidae (Annelida) and its implications for the structure of the ancestral annelid brain

    Get PDF
    Figure S1: Histology Orrhage’s Owenia fusiformis. A: slide showing sections of Owenia fusiformis. B: Intermediate filaments (if) cross the neuropil of the brain (br). The ecm of the epidermis is less prominent where the neuropil layer is above it. C: Posterior part of the brain (br). if: intermediate filaments. (JPG 10649 kb
    corecore