8 research outputs found

    Effects of the protonophore carbonyl-cyanide m-chlorophenylhydrazone on intracytoplasmic membrane assembly in Rhodobacter sphaeroides

    Get PDF
    AbstractThe effect of carbonyl-cyanide m-chlorophenyl-hydrazone (CCCP) on intracytoplasmic membrane (ICM) assembly was examined in the purple bacterium Rhodobacter sphaeroides. CCCP blocks generation of the electrochemical proton gradient required for integral membrane protein insertion. ICM formation was induced for 8h, followed by a 4-h exposure to CCCP. Measurements of fluorescence induction/relaxation kinetics showed that CCCP caused a diminished quantum yield, a cessation in expansion of the functional absorption cross-section and a 4- to 10-fold slowing in the electron transfer turnover rate. ICM vesicles (chromatophores) and an upper-pigmented band (UPB) containing ICM growth initiation sites, were isolated and subjected to clear-native electrophoresis. Proteomic analysis of the chromatophore gel bands indicated that CCCP produced a 2.7-fold reduction in spectral counts in the preferentially assembled light-harvesting 2 (LH2) antenna, while the RC-LH1 complex, F1FO-ATPase and pyridine nucleotide transhydrogenase decreased by 1.7–1.9-fold. For 35 soluble enzymes, the ratio of 0.99 for treated/control proteins demonstrated that protein synthesis was unaffected by CCCP, suggesting that the membrane complex decline arose from the turnover of unassembled apoproteins. In the UPB fraction, an ~2-fold accumulation was observed for the preprotein translocase SecY, the SecA translocation ATPase, SecD and SecF insertion components, and chaperonins DnaJ and DnaK, consistent with the possibility that these factors, which act early in the assembly process, have accumulated in association with nascent polypeptides as stabilized assembly intermediates

    The effects of protein crowding in bacterial photosynthetic membranes on the flow of quinone redox species between the photochemical reaction center and the ubiquinol-cytochrome c2 oxidoreductase.

    No full text
    International audienceAtomic force microscopy (AFM) of the native architecture of the intracytoplasmic membrane (ICM) of a variety of species of purple photosynthetic bacteria, obtained at submolecular resolution, shows a tightly packed arrangement of light harvesting (LH) and reaction center (RC) complexes. Since there are no unattributed structures or gaps with space sufficient for the cytochrome bc(1) or ATPase complexes, they are localized in membrane domains distinct from the flat regions imaged by AFM. This has generated a renewed interest in possible long-range pathways for lateral diffusion of UQ redox species that functionally link the RC and the bc(1) complexes. Recent proposals to account for UQ flow in the membrane bilayer are reviewed, along with new experimental evidence provided from an analysis of intrinsic near-IR fluorescence emission that has served to test these hypotheses. The results suggest that different mechanism of UQ flow exist between species such as Rhodobacter sphaeroides, with a highly organized arrangement of LH and RC complexes and fast RC electron transfer turnover, and Phaeospirillum molischianum with a more random organization and slower RC turnover. It is concluded that packing density of the peripheral LH2 antenna in the Rba. sphaeroides ICM imposes constraints that significantly slow the diffusion of UQ redox species between the RC and cytochrome bc(1) complex, while in Phs. molischianum, the crowding of the ICM with LH3 has little effect upon UQ diffusion. This supports the proposal that in this type of ICM, a network of RC-LH1 core complexes observed in AFM provides a pathway for long-range quinone diffusion that is unaffected by differences in LH complex composition or organization

    Salt-Mediated Au-Cu Nanofoam and Au-Cu-Pd Porous Macrobeam Synthesis.

    No full text
    Multi-metallic and alloy nanomaterials enable a broad range of catalytic applications with high surface area and tuning reaction specificity through the variation of metal composition. The ability to synthesize these materials as three-dimensional nanostructures enables control of surface area, pore size and mass transfer properties, electronic conductivity, and ultimately device integration. Au-Cu nanomaterials offer tunable optical and catalytic properties at reduced material cost. The synthesis methods for Au-Cu nanostructures, especially three-dimensional materials, has been limited. Here, we present Au-Cu nanofoams and Au-Cu-Pd macrobeams synthesized from salt precursors. Salt precursors formed from the precipitation of square planar ions resulted in short- and long-range ordered crystals that, when reduced in solution, form nanofoams or macrobeams that can be dried or pressed into freestanding monoliths or films. Metal composition was determined with X-ray diffraction and energy dispersive X-ray spectroscopy. Nitrogen gas adsorption indicated an Au-Cu nanofoam specific surface area of 19.4 m²/g. Specific capacitance determined with electrochemical impedance spectroscopy was 46.0 F/g and 52.5 F/g for Au-Cu nanofoams and Au-Cu-Pd macrobeams, respectively. The use of salt precursors is envisioned as a synthesis route to numerous metal and multi-metallic nanostructures for catalytic, energy storage, and sensing applications

    Noble Metal Composite Porous Silk Fibroin Aerogel Fibers

    No full text
    Nobel metal composite aerogel fibers made from flexible and porous biopolymers offer a wide range of applications, such as in catalysis and sensing, by functionalizing the nanostructure. However, producing these composite aerogels in a defined shape is challenging for many protein-based biopolymers, especially ones that are not fibrous proteins. Here, we present the synthesis of silk fibroin composite aerogel fibers up to 2 cm in length and a diameter of ~300 μm decorated with noble metal nanoparticles. Lyophilized silk fibroin dissolved in hexafluoro-2-propanol (HFIP) was cast in silicon tubes and physically crosslinked with ethanol to produce porous silk gels. Composite silk aerogel fibers with noble metals were created by equilibrating the gels in noble metal salt solutions reduced with sodium borohydride, followed by supercritical drying. These porous aerogel fibers provide a platform for incorporating noble metals into silk fibroin materials, while also providing a new method to produce porous silk fibers. Noble metal silk aerogel fibers can be used for biological sensing and energy storage applications
    corecore