14 research outputs found

    Gender specific hippocampal whole genome transcriptome data from mice lacking the Cav2.3 R-type or Cav3.2 T-type voltage-gated calcium channel

    No full text
    Voltage-gated Ca2+ channels are of central relevance in mediating numerous intracellular and transcellular processes including excitation-contraction coupling, excitation secretion-coupling, hormone and neurotransmitter release and gene expression. The Cav2.3 R-type Ca2+ channel is a high-voltage activated channel which plays a crucial role in neurotransmitter release, long-term potentiation and hormone release. Furthermore, Cav2.3 R-type channels were reported to be involved in ictogenesis, epileptogenesis, fear behavior, sleep, pre-and postsynaptic integration and rhythmicity within the hippocampus. Cav3 T-type Ca2+ channels are low-voltage activated and also widely expressed throughout the brain enabling neurons to switch between different firing patterns and to modulate burst activity. Disruption of T-type Ca2+ current has been related to sleep disorders, epilepsy, Parkinson׳s disease, depression, schizophrenia and pain. Cav3.2 ablation was further attributed to elevated anxiety and hippocampal alterations resulting in impaired long-term potentiation and memory. Given the importance of Cav2.3 and Cav3.2 voltage-gated Ca2+ channels within the CNS, particularly the hippocampus, we collected gender specific microarray transcriptome data of murine hippocampal RNA probes using the Affymetrix Exon Expression Chip Mouse Gene 1.0 ST v1. Information presented here includes transcriptome data from Cav2.3+/+, Cav2.3+/−, Cav2.3−/−, Cav3.2+/+, Cav3.2+/− and Cav3.2−/− mice from both genders, the protocol and list of primers used for genotyping animals, the hippocampal RNA isolation procedure and quality controls

    Automatic Detection of Highly Organized Theta Oscillations in the Murine EEG

    No full text
    Theta activity is generated in the septohippocampal system and can be recorded using deep intrahippocampal electrodes and implantable electroencephalography (EEG) radiotelemetry or tether system approaches. Pharmacologically, hippocampal theta is heterogeneous (see dualistic theory) and can be differentiated into type I and type II theta. These individual EEG subtypes are related to specific cognitive and behavioral states, such as arousal, exploration, learning and memory, higher integrative functions, etc. In neurodegenerative diseases such as Alzheimer's, structural and functional alterations of the septohippocampal system can result in impaired theta activity/oscillations. A standard quantitative analysis of the hippocampal EEG includes a Fast-Fourier-Transformation (FFT)-based frequency analysis. However, this procedure does not provide details about theta activity in general and highly-organized theta oscillations in particular. In order to obtain detailed information on highly-organized theta oscillations in the hippocampus, we have developed a new analytical approach. This approach allows for time-and cost-effective quantification of the duration of highly-organized theta oscillations and their frequency characteristics

    EEG Radiotelemetry in Small Laboratory Rodents: A Powerful State-of-the Art Approach in Neuropsychiatric, Neurodegenerative, and Epilepsy Research

    No full text
    EEG radiotelemetry plays an important role in the neurological characterization of transgenic mouse models of neuropsychiatric and neurodegenerative diseases as well as epilepsies providing valuable insights into underlying pathophysiological mechanisms and thereby facilitating the development of new translational approaches. We elaborate on the major advantages of nonrestraining EEG radiotelemetry in contrast to restraining procedures such as tethered systems or jacket systems containing recorders. Whereas a main disadvantage of the latter is their unphysiological, restraining character, telemetric EEG recording overcomes these disadvantages. It allows precise and highly sensitive measurement under various physiological and pathophysiological conditions. Here we present a detailed description of a straightforward successful, quick, and efficient technique for intraperitoneal as well as subcutaneous pouch implantation of a standard radiofrequency transmitter in mice and rats. We further present computerized 3D-stereotaxic placement of both epidural and deep intracerebral electrodes. Preoperative preparation of mice and rats, suitable anaesthesia, and postoperative treatment and pain management are described in detail. A special focus is on fields of application, technical and experimental pitfalls, and technical connections of commercially available radiotelemetry systems with other electrophysiological setups

    Altered Theta Oscillations and Aberrant Cortical Excitatory Activity in the 5XFAD Model of Alzheimer's Disease

    No full text
    Alzheimer's disease (AD) is an age-related neurodegenerative disorder characterized by impairment of memory function. The 5XFAD mouse model was analyzed and compared with wild-type (WT) controls for aberrant cortical excitability and hippocampal theta oscillations by using simultaneous video-electroencephalogram (EEG) monitoring. Seizure staging revealed that 5XFAD mice exhibited cortical hyperexcitability whereas controls did not. In addition, 5XFAD mice displayed a significant increase in hippocampal theta activity from the light to dark phase during nonmotor activity. We also observed a reduction in mean theta frequency in 5XFAD mice compared to controls that was again most prominent during nonmotor activity. Transcriptome analysis of hippocampal probes and subsequent qPCR validation revealed an upregulation of Plcd4 that might be indicative of enhanced muscarinic signalling. Our results suggest that 5XFAD mice exhibit altered cortical excitability, hippocampal dysrhythmicity, and potential changes in muscarinic signaling

    Gender-Specific Hippocampal Dysrhythmia and Aberrant Hippocampal and Cortical Excitability in the APPswePS1dE9 Model of Alzheimer’s Disease

    No full text
    Alzheimer’s disease (AD) is a multifactorial disorder leading to progressive memory loss and eventually death. In this study an APPswePS1dE9 AD mouse model has been analyzed using implantable video-EEG radiotelemetry to perform long-term EEG recordings from the primary motor cortex M1 and the hippocampal CA1 region in both genders. Besides motor activity, EEG recordings were analyzed for electroencephalographic seizure activity and frequency characteristics using a Fast Fourier Transformation (FFT) based approach. Automatic seizure detection revealed severe electroencephalographic seizure activity in both M1 and CA1 deflection in APPswePS1dE9 mice with gender-specific characteristics. Frequency analysis of both surface and deep EEG recordings elicited complex age, gender, and activity dependent alterations in the theta and gamma range. Females displayed an antithetic decrease in theta (θ) and increase in gamma (γ) power at 18-19 weeks of age whereas related changes in males occurred earlier at 14 weeks of age. In females, theta (θ) and gamma (γ) power alterations predominated in the inactive state suggesting a reduction in atropine-sensitive type II theta in APPswePS1dE9 animals. Gender-specific central dysrhythmia and network alterations in APPswePS1dE9 point to a functional role in behavioral and cognitive deficits and might serve as early biomarkers for AD in the future

    Motor Cortex Theta and Gamma Architecture in Young Adult APPswePS1dE9 Alzheimer Mice.

    No full text
    Alzheimer's disease (AD) is a multifactorial disorder leading to progressive memory loss and eventually death. In this study, an APPswePS1dE9 AD mouse model has been analyzed for motor cortex theta, beta and gamma frequency alterations using computerized 3D stereotaxic electrode positioning and implantable video-EEG radiotelemetry to perform long-term M1 recordings from both genders considering age, circadian rhythm and activity status of experimental animals. We previously demonstrated that APPswePS1dE9 mice exibit complex alterations in hippocampal frequency power and another recent investigation reported a global increase of alpha, beta and gamma power in APPswePS1dE9 in females of 16-17 weeks of age. In this cortical study in APPswePS1dE9 mice we did not observe any changes in theta, beta and particularly gamma power in both genders at the age of 14, 15, 18 and 19 weeks. Importantly, no activity dependence of theta, beta and gamma activity could be detected. These findings clearly point to the fact that EEG activity, particularly gamma power exhibits developmental changes and spatial distinctiveness in the APPswePS1dE9 mouse model of Alzheimer's disease

    Gender specific click and tone burst evoked ABR datasets from mice lacking the Ca(v)2.3 R-type voltage-gated calcium channel

    No full text
    This data article provides raw auditory evoked brainstem responses (ABRs) from controls and Ca(v)2.3 transgenics, i.e. heterozygous Ca(v)2.3 (broken vertical bar) (/-) and Ca(v)2.3(-/-) null mutants. Gender specific ABR recordings were performed in age-matched animals under ketamine/xylazine narcosis. Data presented here include ABRs upon both click and tone burst presentation in the increasing SPL mode using a commercially available ABR setup from Tucker Davis Technologies Inc. (TDT, USA). Detailed information is provided for the sound attenuating cubicle, electrical shielding, electrode parameters, stimulus characteristics and architecture, sampling rate, filtering processes and ABR protocol application during the course of data acquisition and recording. The later are important for subsequent analysis of click and tone burst related hearing thresholds, amplitude growth function and peak latencies. (C) 2018 The Authors. Published by Elsevier lnc

    Ca(v)3.2 T-Type Calcium Channels Are Physiologically Mandatory for the Auditory System

    No full text
    Voltage-gated Ca2+ channels (VGCCs) play key roles in auditory perception and information processing within the inner ear and brainstem. Pharmacological inhibition of low voltage-activated (LVA) T-type Ca2+ channels is related to both age- and noise induced hearing loss in experimental animals and may represent a promising approach to the treatment of auditory impairment of various etiologies. Within the LVA Ca2+ channel subgroup, Ca(v)3.2 is the most prominently expressed T-type channel entity in the cochlea and auditory brainstem. Thus, we performed a complete gender specific click and tone burst based auditory brainstem response (ABR) analysis of Ca(v)3.2(+/-) and Ca(v)3.2(-/-) mice, including i.a. temporal progression in hearing loss, amplitude growth function and wave latency analysis as well as a cochlear qPCR based evaluation of other VGCCs transcripts. Our results, based on a self-programmed automated wavelet approach, demonstrate that both heterozygous and Ca(v)3.2 null mutant mice exhibit age-dependent increases in hearing thresholds at 5 months of age. In addition, complex alterations in WI-IV amplitudes and latencies were detected that were not attributable to alterations in the expression of other VGCCs in the auditory tract. Our results clearly demonstrate the important physiological role of Ca(v)3.2 VGCCs in the spatiotemporal organization of auditory processing in young adult mice and suggest potential pharmacological targets for interventions in the future. (C) 2019 The Author(s). Published by Elsevier Ltd on behalf of IBRO

    Functional implications of Ca(v)2.3 R-type voltage-gated calcium channels in the murine auditory system - novel vistas from brainstem-evoked response audiometry

    No full text
    Voltage-gated Ca2+ channels (VGCCs) are considered to play a key role in auditory perception and information processing within the murine inner ear and brainstem. In the past, Ca(v)1.3 L-type VGCCs gathered most attention as their ablation causes congenital deafness. However, isolated patch-clamp investigation and localization studies repetitively suggested that Ca(v)2.3 R-type VGCCs are also expressed in the cochlea and further components of the ascending auditory tract, pointing to a potential functional role of Ca(v)2.3 in hearing physiology. Thus, we performed auditory profiling of Ca(v)2.3(+/+) controls, heterozygous Ca(v)2.3(+/-) mice and Ca(v)2.3 null mutants (Ca(v)2.3(-/-)) using brainstem-evoked response audiometry. Interestingly, click-evoked auditory brainstem responses (ABRs) revealed increased hearing thresholds in Ca(v)2.3(+/-) mice from both genders, whereas no alterations were observed in Ca(v)2.3(-/-) mice. Similar observations were made for tone burst-related ABRs in both genders. However, Ca(v)2.3 ablation seemed to prevent mutant mice from total hearing loss particularly in the higher frequency range (36-42 kHz). Amplitude growth function analysis revealed, i.a., significant reduction in ABR wave W-I and W-III amplitude in mutant animals. In addition, alterations in W-I-W-IV interwave interval were observed in female Ca(v)2.3(+/-) mice whereas absolute latencies remained unchanged. In summary, our results demonstrate that Ca(v)2.3 VGCCs are mandatory for physiological auditory information processing in the ascending auditory tract
    corecore