10 research outputs found

    Application of the 0-1 Test for Chaos to Experimental Data

    Full text link

    A Newcomer's Guide to the Challenges of a Complex Space-to-Ground Experiment, With Lessons from Analog-1

    Get PDF
    An astronaut controlling a complex robot on the surface of earth from the ISS. This is exactly what we have done in ANALOG-1. Luca Parmitano teleoperated a rover in a moon-analogue geological mission scenario. On first sight the primary technical challenges seem to be the design of the robotic systems for space and ground. On a second look - with the perspective of using the system with an astronaut on the ISS in loop with an operations team in different ground centers - the scope and challenges drastically increase. In this paper we take a look behind the scenes, and gives insights which could guide future payload developers going on a similar endeavour. This paper outlines the Analog-1 experiment, itself, what it aimed to achieve, and how it was done, and uses it as a case study to outline the challenges and solutions a project team and particularly the payload developer - will have to overcome when designing an ISS experiment. This article may be especially insightful and a good starting point for those from a small research team at a university or other research institution with budget and time pressure. We will present it from the payload developers perspective and on concrete examples of the payloads we flown

    ANALOG-1 ISS - The first part of an analogue mission to guide ESA's robotic moon exploration efforts

    Get PDF
    The METERON project is a European initiative to prepare for future human-robotic exploration missions to the Moon, Mars and other celestial bodies. The project aims to implement infrastructure and tools to test and evaluate communications, operations and robotic control strategies in the context of future exploration missions. It is in collaboration between three directorates of the European Space Agency (ESA); Human and Robotic Exploration (HRE), Technology, Engineering and Quality (TEC), Operations (OPS). This paper presents the first part of the on-going ANALOG-1 experiment which is the culmination of the METERON project, implementing the knowledge gained in the 12 distinct METERON experiments between 2011 and 2020. These all address aspects of teleoperating a robotic asset from an orbital platform, i.e. technical implementation, user interfaces, autonomy and operations. The ANALOG-1 technology demonstration and operations concept experiment is based upon the surface mission scenario segment of the notional EL3 sample return mission. This segment focuses on the control of a lunar surface robotic asset from the Earth and from the Lunar Gateway. In November 2019, the first part of this experiment was successfully completed from the ISS. It assessed the effectiveness of a state-of-the-art robotic control interface to control a complex mobile robot from orbit, as well as evaluating the scientific interactions, during robotic-assisted geology exploration, between crew in orbit and scientists on the ground. Luca Parmitano drove this robot in a lunar analogue site in the Netherlands, and controlled its arms, while he was on the ISS. For this experiment, a complex control station had been installed on the ISS, including a sigma.7 haptic device. This device allowed the astronaut to feel forces felt by the robotic arm. The experiment demonstrated the advantage of having an immersive control station and high level of robotic dexterity, with Luca finishing all his assigned and secondary geology targets ahead of time. The second part of Analog-1 extends the ISS experiment with a full ground-based analogue, in which further technical experiments and a full mission scenario will be played out. The analogue is in cooperation with the DLR ARCHES space demo mission, and includes a rover operations centre based at ESOC as well as an outdoor lunar analogue site on Mount Etna. The astronaut, in this case, is on ground. We expect to further demonstrate the advantages of a state-of-the art interface for both fully teleoperated and semi-autonomous rover and robotic arm control for lunar missions, in order to guide ESA's Moon exploration efforts

    METERON Analog-1: A Touch Remote

    Get PDF
    The METERON project (Multipurpose End-To-End Robotics Operations Network) was implemented by the European Space Agency as an initiative to prepare Europe for future humanrobotic exploration scenarios that in particular, focused on examination of the human-robotic partnership, and how this partnership could be optimized through an evaluation of the tools and methodologies utilized in the experiments in the domains of operations, communications and robotics (specifically with respect to control strategies)

    Preliminary Results for the Multi-Robot, Multi-Partner, Multi-Mission, Planetary Exploration Analogue Campaign on Mount Etna

    Get PDF
    This paper was initially intended to report on the outcome of the twice postponed demonstration mission of the ARCHES project. Due to the global COVID pandemic, it has been postponed from 2020, then 2021, to 2022. Nevertheless, the development of our concepts and integration has progressed rapidly, and some of the preliminary results are worthwhile to share with the community to drive the dialog on robotics planetary exploration strategies. This paper includes an overview of the planned 4-week campaign, as well as the vision and relevance of the missiontowards the planned official space missions. Furthermore, the cooperative aspect of the robotic teams, the scientific motivation, the sub task achievements are summarised

    Finally! Insights into the ARCHES Lunar Planetary Exploration Analogue Campaign on Etna in summer 2022

    Get PDF
    This paper summarises the first outcomes of the space demonstration mission of the ARCHES project which could have been performed this year from 13 june until 10 july on Italy’s Mt. Etna in Sicily. After the second postponement related to COVID from the initially for 2020 planed campaign, we are now very happy to report, that the whole campaign with more than 65 participants for four weeks has been successfully conduced. In this short overview paper, we will refer to all other publication here on IAC22. This paper includes an overview of the performed 4-week campaign and the achieved mission goals and first results but also share our findings on the organisational and planning aspects

    Validation results of satellite mock-up capturing experiment using nets

    Get PDF
    The PATENDER activity (Net parametric characterization and parabolic flight), funded by the European Space Agency (ESA) via its Clean Space initiative, was aiming to validate a simulation tool for designing nets for capturing space debris. This validation has been performed through a set of different experiments under microgravity conditions where a net was launched capturing and wrapping a satellite mock-up. This paper presents the architecture of the thrown-net dynamics simulator together with the set-up of the deployment experiment and its trajectory reconstruction results on a parabolic flight (Novespace A-310, June 2015). The simulator has been implemented within the Blender framework in order to provide a highly configurable tool, able to reproduce different scenarios for Active Debris Removal missions. The experiment has been performed over thirty parabolas offering around 22 s of zero-g conditions. Flexible meshed fabric structure (the net) ejected from a container and propelled by corner masses (the bullets) arranged around its circumference have been launched at different initial velocities and launching angles using a pneumatic-based dedicated mechanism (representing the chaser satellite) against a target mock-up (the target satellite). High-speed motion cameras were recording the experiment allowing 3D reconstruction of the net motion. The net knots have been coloured to allow the images post-process using colour segmentation, stereo matching and iterative closest point (ICP) for knots tracking. The final objective of the activity was the validation of the net deployment and wrapping simulator using images recorded during the parabolic flight. The high-resolution images acquired have been post-processed to determine accurately the initial conditions and generate the reference data (position and velocity of all knots of the net along its deployment and wrapping of the target mock-up) for the simulator validation. The simulator has been properly configured according to the parabolic flight scenario, and executed in order to generate the validation data. Both datasets have been compared according to different metrics in order to perform the validation of the PATENDER simulator

    Exploring planet geology through force-feedback telemanipulation from orbit

    No full text
    Current space exploration roadmaps envision exploring the surface geology of celestial bodies with robots, for both scientific research and in-situ resource utilization. In such unstructured, poorly lit, complex and remote environments, automation is not always possible, and some tasks, such as geological sampling, require direct tele-operation aided by force-feedback. The operator would be on an orbiting spacecraft, and poor bandwidth and high latency and packet loss from orbit to ground mean that safe, stable, and transparent interaction is a substantial technical challenge. For this scenario, a control method was developed which ensures stability at high delay without reduction in speed or loss of positioning accuracy. At the same time, a new level of safety is achieved not only through force-feedback itself but also through 1an intrinsic property of the approach preventing hard impacts. Based on this method, a tele-exploration scenario was simulated in the Analog-1 experiment with an astronaut on the International Space Station (ISS) using a 6-degreeof-freedom (DoF) force-feedback (F-F) capable haptic input device to control a mobile robot with manipulator on Earth to collect rock samples. The 6-DoF FF tele-manipulation from space was performed at a round-trip communication delay constantly between 770 and 850 milliseconds and an average packet loss of 1.27%. This experiment showcases the feasibility of a complete space exploration scenario via haptic tele-manipulation under space-flight conditions. The results underline the benefits of this control method for safe and accurate interactions, and of haptic feedback in general
    corecore