18 research outputs found

    High Density SNP Screen in A Large Multiplex Neural Tube Defect Family Refines Linkage to Loci at 7p21-Pter And 2q33.1-35

    Get PDF
    Neural tube defects (NTDs) are considered complex with both genetic and environmental factors implicated. To date, no major causative genes have been identified in humans despite several investigations. The first genomewide screen in NTDs (Rampersaud et al. 2005) demonstrated evidence of linkage to chromosomes 7 and 10. This screen included forty-four multiplex families and consisted of 402 microsatellite markers spaced approximately 10 cM apart. Further investigation of the genomic screen data identified a single large multiplex family, pedigree 8776, as primarily driving the linkage results on chromosome 7

    Teacher Research Experiences, Partnerships With Scientists, and Teacher Networks Sustaining Factors From Professional Development

    No full text
    This study examined some long-term impacts of a professional development pro- gram, Teachers in the Woods. Several outcomes of the program were acknowledged by participants as having been valuable: a network of like-minded teachers, a net- work of scientists and teachers, and an increase in teachers’ ecological knowledge and field skills. The authors made 3 observations with regard to professional development. First, engaging teachers in real-world field science research is an effective way for them to gain ecological knowledge and skills. Second, the collegiality among teachers and scientists developed during the period of field work can enhance science learning. Third, collegiality among teachers provides opportunities to discuss pedagogy-related issues. Both aspects of collegiality provide support mechanisms that sustain teachers’ efforts to modify their teaching practices

    Gene Expression Analyses Identify Narp Contribution in the Development of L-DOPA-Induced Dyskinesia

    No full text
    International audienceIn Parkinson's disease, long-term dopamine replacement therapy is complicated by the appearance of L-DOPA-induced dyskinesia (LID). One major hypothesis is that LID results from an aberrant transcriptional program in striatal neurons induced by L-DOPA and triggered by the activation of ERK. To identify these genes, we performed transcriptome analyses in the striatum in 6-hydroxydopamine-lesioned mice. A time course analysis (0-6 h after treatment with L-DOPA) identified an acute signature of 709 genes, among which genes involved in protein phosphatase activity were overrepresented, suggesting a negative feedback on ERK activation by L-DOPA. L-DOPA-dependent deregulation of 28 genes was blocked by pretreatment with SL327, an inhibitor of ERK activation, and 26 genes were found differentially expressed between highly and weakly dyskinetic animals after treatment with L-DOPA. The intersection list identified five genes: FosB, Th, Nptx2, Nedd4l, and Ccrn4l. Nptx2 encodes neuronal pentraxin II (or neuronal activity-regulated pentraxin, Narp), which is involved in the clustering of glutamate receptors. We confirmed increased Nptx2 expression after L-DOPA and its blockade by SL327 using quantitative RT-PCR in independent experiments. Using an escalating L-DOPA dose protocol, LID severity was decreased in Narp knock-out mice compared with their wild-type littermates or after overexpression of a dominant-negative form of Narp in the striatum. In conclusion, we have identified a molecular signature induced by L-DOPA in the dopamine-denervated striatum that is dependent on ERK and associated with LID. Here, we demonstrate the implication of one of these genes, Nptx2, in the development of LID
    corecore