1 research outputs found

    Prediction of Large Events on a Dynamical Model of a Fault

    Full text link
    We present results for long term and intermediate term prediction algorithms applied to a simple mechanical model of a fault. We use long term prediction methods based, for example, on the distribution of repeat times between large events to establish a benchmark for predictability in the model. In comparison, intermediate term prediction techniques, analogous to the pattern recognition algorithms CN and M8 introduced and studied by Keilis-Borok et al., are more effective at predicting coming large events. We consider the implications of several different quality functions Q which can be used to optimize the algorithms with respect to features such as space, time, and magnitude windows, and find that our results are not overly sensitive to variations in these algorithm parameters. We also study the intrinsic uncertainties associated with seismicity catalogs of restricted lengths.Comment: 33 pages, plain.tex with special macros include
    corecore