15 research outputs found

    Differential gene expression in liver and small intestine from lactating rats compared to age-matched virgin controls detects increased mRNA of cholesterol biosynthetic genes

    Get PDF
    BACKGROUND: Lactation increases energy demands four- to five-fold, leading to a two- to three-fold increase in food consumption, requiring a proportional adjustment in the ability of the lactating dam to absorb nutrients and to synthesize critical biomolecules, such as cholesterol, to meet the dietary needs of both the offspring and the dam. The size and hydrophobicity of the bile acid pool increases during lactation, implying an increased absorption and disposition of lipids, sterols, nutrients, and xenobiotics. In order to investigate changes at the transcriptomics level, we utilized an exon array and calculated expression levels to investigate changes in gene expression in the liver, duodenum, jejunum, and ileum of lactating dams when compared against age-matched virgin controls. RESULTS: A two-way mixed models ANOVA was applied to detect differentially expressed genes. Significance calls were defined as a p \u3c 0.05 for the overall physiologic state effect (lactation vs. control), and a within tissue pairwise comparison of p \u3c 0.01. The proportion of false positives, an estimate of the ratio of false positives in the list of differentially expressed genes, was calculated for each tissue. The number of differentially expressed genes was 420 in the liver, 337 in the duodenum, 402 in the jejunum, and 523 in the ileum. The list of differentially expressed genes was in turn analyzed by Ingenuity Pathways Analysis (IPA) to detect biological pathways that were overrepresented. In all tissues, sterol regulatory element binding protein (Srebp)-regulated genes involved in cholesterol synthesis showed increased mRNA expression, with the fewest changes detected in the jejunum. We detected increased Scap mRNA in the liver only, suggesting an explanation for the difference in response to lactation between the liver and small intestine. Expression of Cyp7a1, which catalyzes the rate limiting step in the bile acid biosynthetic pathway, was also significantly increased in liver. In addition, decreased levels of mRNA associated with T-cell signaling were found in the jejunum and ileum. Several members of the Solute Carrier (SLC) and Adenosine Triphosphate Binding Cassette (ABC) superfamilies of membrane transporters were found to be differentially expressed; these genes may play a role in differences in nutrient and xenobiotic absorption and disposition. mRNA expression of SLC39a4_predicted, a zinc transporter, was increased in all tissues, suggesting that it is involved in increased zinc uptake during lactation. Microarray data are available through GEO under GSE19175. CONCLUSIONS: We detected differential expression of mRNA from several pathways in lactating dams, including upregulation of the cholesterol biosynthetic pathway in liver and intestine, consistent with Srebp activation. Differential T-Cell signaling in the two most distal regions of the small intestine (ileum and jejunum) was also noted, as well as differential expression of transporters that likely play a key role in nutrient uptake

    Constitutive Androstane Receptor Differentially Regulates Bile Acid Homeostasis in Mouse Models of Intrahepatic Cholestasis

    No full text
    Bile acid (BA) homeostasis is tightly regulated by multiple transcription factors, including farnesoid X receptor (FXR) and small heterodimer partner (SHP). We previously reported that loss of the FXR/SHP axis causes severe intrahepatic cholestasis, similar to human progressive familial intrahepatic cholestasis type 5 (PFIC5). In this study, we found that constitutive androstane receptor (CAR) is endogenously activated in Fxr:Shp double knockout (DKO) mice. To test the hypothesis that CAR activation protects DKO mice from further liver damage, we generated Fxr;Shp;Car triple knockout (TKO) mice. In TKO mice, residual adenosine triphosphate (ATP) binding cassette, subfamily B member 11 (ABCB11; alias bile salt export pump [BSEP]) function and fecal BA excretion are completely impaired, resulting in severe hepatic and biliary damage due to excess BA overload. In addition, we discovered that pharmacologic CAR activation has different effects on intrahepatic cholestasis of different etiologies. In DKO mice, CAR agonist 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP; here on TC) treatment attenuated cholestatic liver injury, as expected. However, in the PFIC2 model Bsep knockout (BKO) mice, TC treatment exhibited opposite effects that reflect increased BA accumulation and liver injury. These contrasting results may be linked to differential regulation of systemic cholesterol homeostasis in DKO and BKO livers. TC treatment selectively up-regulated hepatic cholesterol levels in BKO mice, supporting de novo BA synthesis. Conclusion: CAR activation in DKO mice is generally protective against cholestatic liver injury in these mice, which model PFIC5, but not in the PFIC2 model BKO mice. Our results emphasize the importance of the genetic and physiologic background when implementing targeted therapies to treat intrahepatic cholestasis
    corecore