102 research outputs found

    Severe Lake Heatwaves Attributable to Human‐Induced Global Warming

    Get PDF
    Much of the focus of global warming impacts on lakes have focused on changes in mean temperature. However, lakes are also highly vulnerable to thermal extremes. Such extremes occur, by definition, during lake heatwaves. Heatwaves in lakes have occurred globally in recent decades and have had severe negative impacts. However, unlike their atmospheric counterparts, it is currently unknown to what extent lake heatwaves are altered by human-induced climate change. Here, we estimate the human contribution to lake heatwaves, specifically focusing on the most severe events. We demonstrate that the occurrence probabilities of severe lake heatwaves increase substantially due to human influence. Our analysis suggests that 94% of severe heatwaves observed during the satellite data-taking period have an anthropogenic contribution. Globally, we suggest that severe heatwaves are 3 and 25- times more likely in a 1.5°C and 3.5°C warmer world, respectively, compared to a world without anthropogenic influence

    Earlier ice loss accelerates lake warming in the Northern Hemisphere

    Get PDF
    How lake temperatures across large geographic regions are responding to widespread alterations in ice phenology (i.e., the timing of seasonal ice formation and loss) remains unclear. Here, we analyse satellite data and global-scale simulations to investigate the contribution of long-term variations in the seasonality of lake ice to surface water temperature trends across the Northern Hemisphere. Our analysis suggests a widespread excess lake surface warming during the months of ice-off which is, on average, 1.4 times that calculated during the open-water season. This excess warming is influenced predominantly by an 8-day advancement in the average timing of ice break-up from 1979 to 2020. Until the permanent loss of lake ice in the future, excess lake warming may be further amplified due to projected future alterations in lake ice phenology. Excess lake warming will likely alter within-lake physical and biogeochemical processes with numerous implications for lake ecosystems
    • 

    corecore