169 research outputs found

    Scale interactions on diurnal toseasonal timescales and their relevanceto model systematic errors

    Get PDF
    Examples of current research into systematic errors in climate models are used to demonstrate the importance of scale interactions on diurnal,intraseasonal and seasonal timescales for the mean and variability of the tropical climate system. It has enabled some conclusions to be drawn about possible processes that may need to be represented, and some recommendations to be made regarding model improvements. It has been shown that the Maritime Continent heat source is a major driver of the global circulation but yet is poorly represented in GCMs. A new climatology of the diurnal cycle has been used to provide compelling evidence of important land-sea breeze and gravity wave effects, which may play a crucial role in the heat and moisture budget of this key region for the tropical and global circulation. The role of the diurnal cycle has also been emphasized for intraseasonal variability associated with the Madden Julian Oscillation (MJO). It is suggested that the diurnal cycle in Sea Surface Temperature (SST) during the suppressed phase of the MJO leads to a triggering of cumulus congestus clouds, which serve to moisten the free troposphere and hence precondition the atmosphere for the next active phase. It has been further shown that coupling between the ocean and atmosphere on intraseasonal timescales leads to a more realistic simulation of the MJO. These results stress the need for models to be able to simulate firstly, the observed tri-modal distribution of convection, and secondly, the coupling between the ocean and atmosphere on diurnal to intraseasonal timescales. It is argued, however, that the current representation of the ocean mixed layer in coupled models is not adequate to represent the complex structure of the observed mixed layer, in particular the formation of salinity barrier layers which can potentially provide much stronger local coupling between the atmosphere and ocean on diurnal to intraseasonal timescales

    Virtual reality, ultrasound-guided liver biopsy simulator: Development and performance discrimination

    Get PDF
    Objectives: The aim of this article was to identify and prospectively investigate simulated ultrasound-guided targeted liver biopsy performance metrics as differentiators between levels of expertise in interventional radiology. Methods: Task analysis produced detailed procedural step documentation allowing identification of critical procedure steps and performance metrics for use in a virtual reality ultrasound-guided targeted liver biopsy procedure. Consultant (n=14; male=11, female=3) and trainee (n=26; male=19, female=7) scores on the performance metrics were compared. Ethical approval was granted by the Liverpool Research Ethics Committee (UK). Independent t-tests and analysis of variance (ANOVA) investigated differences between groups. Results: Independent t-tests revealed significant differences between trainees and consultants on three performance metrics: targeting, p=0.018, t=22.487 (22.040 to 20.207); probe usage time, p=0.040, t=2.132 (11.064 to 427.983); mean needle length in beam, p=0.029, t=22.272 (20.028 to 20.002). ANOVA reported significant differences across years of experience (0–1, 1–2, 3+ years) on seven performance metrics: no-go area touched, p=0.012; targeting, p=0.025; length of session, p=0.024; probe usage time, p=0.025; total needle distance moved, p=0.038; number of skin contacts, p<0.001; total time in no-go area, p=0.008. More experienced participants consistently received better performance scores on all 19 performance metrics. Conclusion: It is possible to measure and monitor performance using simulation, with performance metrics providing feedback on skill level and differentiating levels of expertise. However, a transfer of training study is required

    Validity and worth in the science curriculum: learning school science outside the laboratory

    Get PDF
    It is widely acknowledged that there are problems with school science in many developed countries of the world. Such problems manifest themselves in a progressive decline in pupil enthusiasm for school science across the secondary age range and the fact that fewer students are choosing to study the physical sciences at higher levels and as careers. Responses to these developments have included proposals to reform the curriculum, pedagogy and the nature of pupil discussion in science lessons. We support such changes but argue from a consideration of the aims of science education that secondary school science is too rooted in the science laboratory; substantially greater use needs to be made of out-of-school sites for the teaching of science. Such usage should result in a school science education that is more valid and more motivating and is better at fulfilling defensible aims of school science education. Our contention is that laboratory-based school science teaching needs to be complemented by out-of-school science learning that draws on the actual world (e.g. through fieldtrips), the presented world (e.g. in science centres, botanic gardens, zoos and science museums) and the virtual worlds that are increasingly available through information and communications technologies (ICT)
    corecore