16 research outputs found

    Flowering margins support natural enemies between cropping seasons

    Get PDF
    IntroductionPopulations of natural enemies of insect pests are declining owing to agricultural intensification and indiscriminate use of pesticides, and this may be exacerbated in agricultural systems that clear all margin plants after the cropping season for other uses such as fodder. Retaining a diversity of non-crop flowering vegetation outside the cropping season may support more resilient and effective natural pest regulation.MethodsWe tested the potential for non-crop vegetation to support natural enemies in fields across two locations after harvesting the primary crops of lablab and maize.ResultsA total of 54 plant species were recorded across the sites in Kenya with 59% of them being annuals and 41% perennials. There was a significant seasonal variation in plant species richness (ANOVA: F1, 16 = 33. 45; P< 0.0001) and diversity (ANOVA: F1, 16 = 7.20; P = 0.0511). While time since harvesting was a significant factor influencing the overall abundance of natural enemies (ANOVA: F2, 1,133 = 8.11; P< 0.0001), they were generally higher in abundance in locations with margin plants or where a diversity of margin plants was observed.DiscussionThese findings demonstrate that flowering plants in agricultural systems offer refuge and alternative food for natural enemies and potentially other beneficial insects between cropping seasons. The conservation of natural enemies between crops may lead to more effective natural pest regulation early in the following crop, thus reducing reliance on insecticides application

    Natural pest regulation and its compatibility with other crop protection practices in smallholder bean farming systems

    Get PDF
    Common bean (Phaseolus vulgaris) production and storage are limited by numerous constraints. Insect pests are often the most destructive. However, resource-constrained smallholders in sub-Saharan Africa (SSA) often do little to manage pests. Where farmers do use a control strategy, it typically relies on chemical pesticides, which have adverse effects on the wildlife, crop pollinators, natural enemies, mammals, and the development of resistance by pests. Nature-based solutions —in particular, using biological control agents with sustainable approaches that include biopesticides, resistant varieties, and cultural tools—are alternatives to chemical control. However, significant barriers to their adoption in SSA include a lack of field data and knowledge on the natural enemies of pests, safety, efficacy, the spectrum of activities, the availability and costs of biopesticides, the lack of sources of resistance for different cultivars, and spatial and temporal inconsistencies for cultural methods. Here, we critically review the control options for bean pests, particularly the black bean aphid (Aphis fabae) and pod borers (Maruca vitrata). We identified natural pest regulation as the option with the greatest potential for this farming system. We recommend that farmers adapt to using biological control due to its compatibility with other sustainable approaches, such as cultural tools, resistant varieties, and biopesticides for effective management, especially in SSA

    Characterization of hymenopteran parasitoids of aphis fabae in an African smallholder bean farming system through sequencing of COI 'mini-barcodes'

    Get PDF
    Parasitoids are among the most frequently reported natural enemies of insect pests, particularly aphids. The efficacy of parasitoids as biocontrol agents is influenced by biotic and abiotic factors. For example, hyperparasitoids can reduce the abundance of the primary parasitoids as well as modify their behavior. A field study was conducted at three contrasting elevations on Mount Kilimanjaro, Tanzania, to identify the parasitoids of aphids in smallholder bean farming agroecosystems. Sentinel aphids (Aphis fabae) on potted bean plants (Phaseolus vulgaris) were exposed in 15 bean fields at three elevations for 2 days. The sentinel aphids were then kept in cages in a greenhouse until emergence of the parasitoids, which were collected and preserved in 98% ethanol for identification. Of the 214 parasitoids that emerged from sentinel aphids, the greatest abundance (44.86%) were from those placed at intermediate elevations (1000–1500 m a.s.l), compared to 42.52% from the lowest elevations and only 12.62% from the highest elevation farms. Morphological identification of the parasitoids that emerged from parasitized aphids showed that 90% were Aphidius species (Hymenoptera: Braconidae: Aphidiinae). Further characterization by sequencing DNA ‘mini-barcodes’ identified parasitoids with ≥99% sequence similarity to Aphidius colemani, 94–95% sequence similarity to Pachyneuron aphidis and 90% similarity to a Charipinae sp. in the National Center for Biotechnology Information (NCBI) database. These results confidently identified A. colemani as the dominant primary aphid parasitoid of A. fabae in the study area. A Pachyneuron sp., which was most closely related to P. aphidis, and a Charipinae sp. occurred as hyperparasitoids. Thus, interventions to improve landscapes and farming practice should monitor specifically how to augment populations of A. colemani, to ensure any changes enhance the delivery of natural pest regulation. Further studies are needed for continuous monitoring of the hyperparasitism levels and the dynamics of aphids, primary parasitoids, and secondary parasitoids in different cropping seasons and their implications in aphid control

    The diversity of aphid parasitoids in East Africa and implications for biological control

    Get PDF
    BACKGROUND Hymenopteran parasitoids provide key natural pest regulation services and are reared commercially as biological control agents. Therefore, understanding parasitoid community composition in natural populations is important to enable better management for optimized natural pest regulation. We carried out a field study to understand the parasitoid community associated with Aphis fabae on East African smallholder farms. Either common bean (Phaseolus vulgaris) or lablab (Lablab purpureus) sentinel plants were infested with Aphis fabae and deployed in 96 fields across Kenya, Tanzania, and Malawi. RESULTS A total of 463 parasitoids emerged from sentinel plants of which 424 were identified by mitochondrial cytochrome oxidase I (COI) barcoding. Aphidius colemani was abundant in Kenya, Tanzania and Malawi, while Lysiphlebus testaceipes was only present in Malawi. The identity of Aphidius colemani specimens were confirmed by sequencing LWRh and 16S genes and was selected for further genetic and population analyses. A total of 12 Aphidius colemani haplotypes were identified. Of these, nine were from our East African specimens and three from the Barcode of Life Database (BOLD). CONCLUSION Aphidius colemani and Lysiphlebus testaceipes are potential targets for conservation biological control in tropical smallholder agro-ecosystems. We hypothesize that high genetic diversity in East African populations of Aphidius colemani suggests that this species originated in East Africa and has spread globally due to its use as a biological control agent. These East African populations could have potential for use as strains in commercial biological control or to improve existing Aphidius colemani strains by selective breeding

    Contrasting terrestrial and marineecospace dynamics after the end-Triassic mass extinction event

    No full text
    Mass extinctions have fundamentally altered the structure of the biospherethroughout Earth’s history. The ecological severity of mass extinctions iswell studied in marine ecosystems by categorizing marine taxa into func-tional groups based on‘ecospace’approaches, but the ecological responseof terrestrial ecosystems to mass extinctions is less well understood due tothe lack of a comparable methodology. Here, we present a new terrestrialecospace framework that categorizes fauna into functional groups as definedby tiering, motility and feeding traits. We applied the new terrestrial and tra-ditional marine ecospace analyses to data from the Paleobiology Databaseacross the end-Triassic mass extinction—a time of catastrophic global warming—to compare changes between the marine and terrestrial biospheres.We found that terrestrial functional groups experienced higher extinctionseverity, that taxonomic and functional richness are more tightly coupledin the terrestrial, and that the terrestrial realm continued to experiencehigh ecological dissimilarity in the wake of the extinction. Althoughsignals of extinction severity and ecological turnover are sensitive tothe quality of the terrestrial fossil record, our findings suggest greaterecological pressure from the end-Triassic mass extinction on terrestrialecosystems than marine ecosystems, contributing to more prolongedterrestrial ecological flux
    corecore