1,204 research outputs found

    Farm building studies in northwest Missouri

    Get PDF
    Publication authorized August 7, 1934.Includes bibliographical references

    The durability of fence posts

    Get PDF
    Cover title

    The curved roof machinery building

    Get PDF
    Caption title.Digitized 2006 AES MoU

    Emergency storage for soybeans

    Get PDF
    Caption title.Digitized 2007 AES MoU

    Ventilation of animal shelters

    Get PDF
    Caption title.Digitized 2006 AES MoU

    Effect of treatment on fence posts

    Get PDF
    Cover title.Includes bibliographical references

    Buildings for the dairy enterprise

    Get PDF
    Cover title.Includes bibliographical references

    The durability of fence posts

    Get PDF
    Caption title

    Advances in biodiversity: metagenomics and the unveiling of biological dark matter

    Get PDF
    BACKGROUND: Efforts to harmonize genomic data standards used by the biodiversity and metagenomic research communities have shown that prokaryotic data cannot be understood or represented in a traditional, classical biological context for conceptual reasons, not technical ones. RESULTS: Biology, like physics, has a fundamental duality—the classical macroscale eukaryotic realm vs. the quantum microscale microbial realm—with the two realms differing profoundly, and counter-intuitively, from one another. Just as classical physics is emergent from and cannot explain the microscale realm of quantum physics, so classical biology is emergent from and cannot explain the microscale realm of prokaryotic life. Classical biology describes the familiar, macroscale realm of multi-cellular eukaryotic organisms, which constitute a highly derived and constrained evolutionary subset of the biosphere, unrepresentative of the vast, mostly unseen, microbial world of prokaryotic life that comprises at least half of the planet’s biomass and most of its genetic diversity. The two realms occupy fundamentally different mega-niches: eukaryotes interact primarily mechanically with the environment, prokaryotes primarily physiologically. Further, many foundational tenets of classical biology simply do not apply to prokaryotic biology. CONCLUSION: Classical genetics one held that genes, arranged on chromosomes like beads on a string, were the fundamental units of mutation, recombination, and heredity. Then, molecular analysis showed that there were no fundamental units, no beads, no string. Similarly, classical biology asserts that individual organisms and species are fundamental units of ecology, evolution, and biodiversity, composing an evolutionary history of objectively real, lineage-defined groups in a single-rooted tree of life. Now, metagenomic tools are forcing a recognition that there are no completely objective individuals, no unique lineages, and no one true tree. The newly revealed biosphere of microbial dark matter cannot be understood merely by extending the concepts and methods of eukaryotic macrobiology. The unveiling of biological dark matter is allowing us to see, for the first time, the diversity of the entire biosphere and, to paraphrase Darwin, is providing a new view of life. Advancing and understanding that view will require major revisions to some of the most fundamental concepts and theories in biology

    Development of integrated thermionic circuits for high-temperature applications

    Get PDF
    Integrated thermionic circuits (ITC) capable of extended operation in ambient temperatures up to 500 C are studied. A set of practical design and performance equations is demonstrated. Experimental results are discussed in which both devices and simple circuits were successfully operated in 5000 C environments for extended periods. It is suggested that ITC's may become an important technology for high temperature instrumentation and control systems in geothermal and other high temperature environments
    • …
    corecore