114 research outputs found

    Conjugate fault deformation revealed by aftershocks of the 2013 Mw6.6 Lushan earthquake and seismic anisotropy tomography

    Get PDF
    The Lushan seismic dataset used in the manuscript entitled 'Conjugate fault deformation revealed by aftershocks of the 2013 Mw6.6 Lushan earthquake and seismic anisotropy tomography ' submitted to Geophysical Research Letters

    Shear-wave attenuation anisotropy: a new constraint on mantle melt near the Main Ethiopian Rift

    Get PDF
    The behaviour of fluids in preferentially aligned fractures plays an important role in a range of dynamic processes within the Earth. In the near-surface, understanding systems of fluid-filled fractures is crucial for applications such as geothermal energy production, monitoring CO2 storage sites, and exploration for metalliferous sub-volcanic brines. Mantle melting is a key geodynamic process, exerting control over its composition and dynamic processes. Upper mantle melting weakens the lithosphere, facilitating rifting and other surface expressions of tectonic processes. Aligned fluid-filled fractures are an efficient mechanism for seismic velocity anisotropy, requiring very low volume fractions, but such rock physics models also predict significant shear-wave attenuation anisotropy. In comparison, the attenuation anisotropy expected for crystal preferred orietation mechanisms is negligible or would only operate outside of the seismic frequency band. Here we demonstrate a new method for measuring shear-wave attenuation anisotropy, apply it to synthetic examples, and make the first measurements of SKS attenuation anisotropy using data recorded at the station FURI, in Ethiopia. At FURI we measure attenuation anisotropy where the fast shear-wave has been more attenuated than the slow shear-wave. This can be explained by the presence of aligned fluids, most probably melts, in the upper mantle using a poroelastic squirt flow model. Modelling of this result suggests that a 1% melt fraction, hosted in aligned fractures dipping ca. 40° that strike perpendicular to the Main Ethiopian Rift, is required to explain the observed attenuation anisotropy. This agrees with previous SKS shear-wave splitting analysis which suggested a 1% melt fraction beneath FURI. The interpreted fracture strike and dip, however, disagrees with previous work in the region which interprets sub-vertical melt inclusions aligned parallel to the Main Ethiopian Rift which only produce attenuation anisotropy where the slow shear-wave is more attenuated. These results show that attenuation anisotropy could be a useful tool for detecting mantle melt, and may offer strong constraints on the extent and orientation of melt inclusions which cannot be achieved from seismic velocity anisotropy alone

    Seismic anisotropy in deforming halite:Evidence from the Mahogany salt body

    Get PDF
    We present unambiguous evidence that the Mahogany salt body, located in the Northern part of the Gulf of Mexico, is seismically anisotropic. Evidence of anisotropy comes from shear wave splitting data obtained from a vertical seismic profile VSP. The data set consists of 48 vertically aligned receivers in a borehole drilled through the salt body. Splitting analysis is performed on shear wave phases that are converted from compressional waves at the top and bottom of the salt body. The phase converted at the top of the salt layer shows a clear signature of seismic anisotropy, while the phase at the base of the salt layer shows negligible splitting. We investigate the possibility of rock salt halite LPO as a cause of the observed anisotropy. A finite element geomechanical salt deformation model of the Mahogany salt body is developed, where deformation history is used as an input to the texture plasticity simulation program VPSC. Assuming a halite salt body, a full elasticity model is then calculated and used to create a synthetic VSP splitting data set. The comparison between the synthetic and real VSP data set shows that LPO of rock salt can explain the observed anisotropy remarkably well. This is the strongest evidence to date of seismic anisotropy in a deforming salt structure. Furthermore, for the first time, we are able to demonstrate clear evidence that deforming halite is the most likely cause of this anisotropy, combining data set analysis and synthetic full wave form modelling based on calculated rock salt elasticities. Neglecting anisotropy in seismic processing in salt settings could lead to potential imaging errors, for example the deformation models show an averaged delta parameter of δ=-0.06, which would lead in a zero offset reflection setting to a depth mismatch of 6.2 per cent. Our work also show how observations of salt anisotropy can be used to probe characteristics of salt deformation
    corecore