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Abstract  25 

We investigate the effect of various types of deformation mechanisms on the reflection 26 

coefficients of P and S waves underside reflections off the 410 km discontinuity, to develop a 27 

diagnostic tool to detect the style of deformation at boundary layers. We calculate the 28 

reflection coefficient for P and SH underside reflections using velocity perturbations resulting 29 

from aligned minerals above the 410 km discontinuity for different deformation scenarios. 30 

The results show that in the case of an anisotropic olivine layer above an isotropic wadsleyite 31 

layer, the P wave reflection coefficient amplitudes are only slightly influenced by the joint 32 

effect of angle of incidence and the strength of imposed deformation, without any polarity 33 

reversal and for all deformation styles. For the SH wave underside reflections the incidence 34 

angle for which a polarity reversal occurs, changes with distance for all scenarios and in 35 

addition changes with azimuth for shear deformation scenarios. These differences in 36 

amplitude and polarity patterns of reflection coefficients of different deformation geometries, 37 

especially for S wave at shorter distances potentially provide a possibility to distinguish 38 

between different styles of deformation at a boundary layer. We also show a first test using 39 

currently available elastic constants of anisotropic wadsleyite beneath anisotropic olivine. 40 

Keywords 41 

410 km seismic discontinuity, Underside reflections, Reflection coefficient, Deformation style,  42 

Anisotropy 43 

 44 

1.Introduction 45 

Seismic anisotropy, the intrinsic property of elastic materials that produces the directional 46 

dependence of seismic wave speed and polarization has been observed in many regions of the 47 

Earth's interior. A wide range of seismic studies inferred the anisotropic structure of the Earth 48 
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for example near the surface (e.g., Crampin, 1994) and in the lower crust (e.g., Savage, 1999) 49 

and seismic anisotropy in the upper mantle is now well established by SKS splitting and 50 

surface waves (e.g., see Yu et al., 1995; Silver, 1996; Montagner, 1998; Savage, 1999; 51 

Kendall, 2000; Gaherty, 2004; Long and van der Hilst, 2005; Long, 2009; Eakin et al., 2015).  52 

To a lesser extent anisotropy is detected in the lowermost mantle and the D
"
 layer (e.g., 53 

Kendall and Silver, 1998; Lay et al., 1998; Ritsema, 2000; Thomas and Kendall, 2002; 54 

Nowacki et al., 2010) and in the inner core (e.g., Song, 1996; Morelli et al., 1986; Niu and 55 

Chen, 2008; Deuss, 2014).  56 

Seismic anisotropy at mid-mantle depths is not well understood. Indeed, some studies report 57 

evidences for little to no anisotropy (e.g., Kaneshima and Silver, 1992; Fischer and Wiens, 58 

1996), while others show the presence of anisotropy on a global scale (e.g., Trampert and van 59 

Heijst, 2002; Panning and Romanowicz, 2006) or in the top ~200-250 km of the mantle (e.g., 60 

Montagner and Kennett, 1996; Debayle et al., 2005; Yuan and Romanowicz, 2010). In 61 

addition, some studies indicate the presence of anisotropy in the mantle transition zone 62 

(MTZ) between 410 and 660 km depth (Fouch and Fischer, 1996; Montagner and Kennett, 63 

1996; Beghein and Trampert, 2003; Beghein et al., 2006; Panning and Romanowicz, 2006; 64 

Visser et al., 2008; Yuan and Beghein, 2013) as well as below the 660 km discontinuity both 65 

regionally (e.g., Tong et al., 1994; Wookey et al., 2002; Chen and Brudzinski, 2003; Wookey 66 

and Kendall, 2004) and globally (e.g., Montagner and Kennett, 1996; Trampert and van 67 

Heijst, 2002). A mechanism to produce seismic anisotropy is deformation due to mantle flow 68 

(see Kendall, 2000 for a review). In this paper, we focus on anisotropy in the upper part of 69 

the mantle transition zone and test a method that could potentially be used to detect seismic 70 

anisotropy independently of surface waves and shear wave splitting.  71 

The seismic discontinuity at 410 km depth is attributed to a pressure-induced phase 72 

transformation of olivine to wadsleyite (e.g., Helffrich and Wood, 1996; Akaogi et al., 1989; 73 
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Katsura and Ito, 1989; Katsura et al., 2004). Olivine is volumetrically the most important 74 

mineral in the upper mantle. Moreover, olivine-single crystals display a large shear wave 75 

anisotropy of up to ~18% (e.g., Mainprice, 2007). Alignment of olivine anisotropic crystals is 76 

thus interpreted as the primary source for upper mantle anisotropy (e.g., Kumazawa and 77 

Anderson, 1969; Chastel et al., 1993; Abramson et al., 1997; Tommasi, 1998; Stein and 78 

Wysession, 2003). Wadsleyite is the high pressure-temperature polymorph of olivine and the 79 

primary mantle transition zone mineral constituent between 410 and 520 km depth. Ambient 80 

temperature calculations and measurements show that it exhibits a strong intrinsic elastic 81 

anisotropy (~10-14% for shear and compressional waves at 410 km depth pressures, e.g., Zha 82 

et al., 1997; Mainprice et al., 2000). This anisotropy is stronger than that of ringwoodite and 83 

majorite-garnet but weaker than that of olivine (e.g., Pacalo and Weidner, 1997; Sinogeikin et 84 

al., 1998; Mainprice et al., 2000). 85 

The presence of anisotropic minerals in the medium does not necessarily produce seismic 86 

anisotropy. As suggested by Montagner (1998), four conditions are required in order to detect 87 

large-scale mantle LPO (Lattice Preferred Orientation) seismic anisotropy: a) presence of 88 

intrinsic anisotropic materials, b) efficient mechanisms of crystals orientation, c) anisotropy 89 

of an assemblage of minerals which is usually less than the anisotropy of the pure mineral 90 

and d) coherent strain field due to effective deformation field. Anisotropic minerals in the 91 

presence of plastic deformation related to mantle flows can potentially develop a 92 

Crystallographic Preferred Orientation (CPO) (Karato and Wu, 1993) that gives rise to 93 

seismic anisotropy. Due to the direct link between the CPO of mantle minerals and mantle 94 

deformation, the study of seismic anisotropy can be used as a marker for the style of mantle 95 

flow in different tectonic regions which provides valuable information for our understanding 96 

of dynamic processes at depth (e.g., Nicolas and Christensen, 1987; Mainprice and Silver, 97 

1993; Karato et al., 2008; Long and Silver, 2009). However, the interpretation of the MTZ 98 
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seismic anisotropy in terms of flow geometry is not yet clear, due to little information 99 

provided on the CPO of minerals under mantle transition zone pressure and temperature 100 

conditions.  Furthermore, the interpretation of seismic anisotropy in terms of deformation 101 

mechanisms becomes more complicated with the effect of water content of the rocks, 102 

deviatoric stress, strain, pressure and temperature on the directional characteristics of 103 

anisotropic minerals (e.g., Zhang and Karato, 1995; Bystricky et al., 2000; Zhang et al., 2000; 104 

Jung and Karato, 2001a; Durinck et al., 2005; Mainprice et al., 2005; Jung et al., 2006; 105 

Katayama and Karato, 2006; Warren and Hirth, 2006; Raterron et al., 2007; Jung et al., 2009;  106 

Skemer et al., 2010; Demouchy et al., 2011; Kawazoe et al., 2013; Ohuchi et al., 2014; 107 

Raterron et al., 2014).  108 

In addition to the constraints provided by experimental mineral physics, seismological 109 

observations and geodynamical modelling, insight into the nature of anisotropic structures in 110 

the mantle can be gained by measuring and modelling of reflection coefficients from waves 111 

reflected at seismic interfaces (e.g., Thomas et al., 2011). In this study, we extend the method 112 

used by Thomas et al. (2011) to establish whether it allows us to detect anisotropy at the 410 113 

km discontinuity. We test whether this approach applied to P and S waves that reflect off the 114 

underside of 410 km discontinuity (P
410

P and S
410

S) potentially provides information on the 115 

elastic wave speeds and deformation geometry of the olivine and wadsleyite aggregates 116 

deformed by a strain field. Our intent is not to fully cover all the aspects of seismic 117 

anisotropy in the mantle transition zone, but rather to provide and test a method that relates 118 

PP and SS underside reflections to the style of deformation occurring at the MTZ depths. 119 

2.Methodology  120 

The amplitude and polarity of reflected seismic waves at a given interface are dependent on 121 

the impedance (product of velocity and density) contrast between of the two media above and 122 



6 
 

below the interface. A numerical measure of the amplitude and polarity of a reflected wave is 123 

given by reflection coefficient and can be computed using Zoeppritz's equations (Zoeppritz, 124 

1919). In the case of isotropic materials the velocities and density do not vary with direction 125 

and, as a consequence, the reflection coefficient of the reflected wave does not change as a 126 

function of azimuth.  127 

The alignment of anisotropic crystals however, may influence the observed velocities such 128 

that the reflection coefficients will vary with azimuth, depending on fast and slow axes of 129 

aligned polycrystals. For reflections from the top of the D
"
 layer, Thomas et al. (2011) 130 

showed that the azimuthal variations of P and S reflection coefficients can be used as a 131 

marker of mineral alignment and the anisotropy above and below the interface.   132 

We compute the reflection coefficients of P and S wave underside reflections using the 133 

crystal preferred alignment predictions of olivine produced for different deformation 134 

geometries above the 410 km discontinuity. We combine the deformed olivine with non-135 

deformed, isotropic wadsleyite to test whether the reflection coefficient pattern for underside 136 

reflections can be used as a diagnostic tool for determining the deformation mechanism 137 

occurring at mantle transition zone boundaries (Figure 1). This is the first step, intended to 138 

show the validity of the approach but it has to be extended to  other cases in the future.  139 

2.1. Elastic constants of single-crystal olivine at high pressure and temperature  140 

The olivine to wadsleyite phase transformation in the average Earth's mantle occurs at 141 

pressures around 13.8 GPa (e.g., Bina and Helffrich, 1994) and a temperature of 1760±45 K 142 

(e.g., Katsura et al., 2004). The detailed knowledge of the single-crystal elasticity of major 143 

mantle minerals such as olivine at relevant pressure-temperature (P-T) conditions is required 144 

in order to interpret the observed seismic properties (see Mainprice, 2000 for a review) and 145 

especially seismic anisotropy. The elastic moduli of olivine have been investigated at mantle 146 
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pressures by methods such as impulsive simulated scattering (Abramson et al., 1997), 147 

Brillouin scattering (Zha et al., 1996, 1998; Mao et al., 2015; Zhang and Bass, 2016) 148 

ultrasonic interferometry (Chen et al., 1996; Liu et al., 2005), and first-principles calculations 149 

(e.g., Núñez-Valdez et al., 2013). But, due to experimental and computational difficulties, the 150 

full elastic tensor of single-crystal olivine has, to our knowledge, not been provided at 151 

simultaneous P and T conditions of the 410 km discontinuity. Mao et al. (2015) used in-situ 152 

Brillouin spectroscopy and single crystal X-ray diffraction in externally-heated diamond anvil 153 

cells and, reported the elasticity of single-crystal olivine up to 20 GPa and 900 K, which was 154 

completed by the study of Zhang and Bass (2016) up to 13 GPa and 1300 K. 155 

In order to obtain the elastic moduli of olivine at P-T conditions relevant to 410 km depth, we 156 

compute the P-T derivatives of the elastic constants of olivine by fitting polynomial functions 157 

to the experimentally derived elastic moduli reported by Mao et al. (2015). The fitted 158 

polynomial functions are characterized by the first order derivative in temperature and second 159 

order derivative in pressure. The choice of such polynomials is based on a study by Isaak 160 

(1992) which shows that under high-pressure conditions, despite having two different slopes 161 

of elastic moduli of olivine versus temperature below and above 800 K, the temperature 162 

dependence of Cij can be described by a linear expression. We then extrapolate the 163 

polynomial to the relevant pressure of 13.3 GPa and temperature of 1750 K. The obtained 164 

values for elastic constants of olivine are listed in Table 1. These values have been used as 165 

the olivine single-crystal elastic constants to calculate the polycrystalline elastic properties of 166 

olivine and for further calculations of P and S wave reflection coefficients.  167 

It should be noted that the experimental measurements uncertainties of elastic moduli given 168 

by Mao et al. (2015) are not taken into account for calculation of P-T derivatives. However, 169 

to investigate the possible effect of different elastic moduli values of olivine on the reflection 170 

coefficients of P and S waves, a second order polynomial for both pressure and temperature 171 



8 
 

derivatives was also tested. These elastic moduli differ by up to 25 GPa from those of Table 172 

1. Nevertheless, reflection coefficients obtained for P and S waves using this set of elastic 173 

constants exhibit a negligible difference compared to those produced from the first set of 174 

elastic moduli of olivine and we therefore focus on the results associated with the first class 175 

of elastic constants. 176 

2.2. Elastic constants of single-crystal wadsleyite at high pressure and temperature 177 

A number of studies have been carried out to determine the polycrystalline elastic properties 178 

of wadsleyite under different pressure and temperature conditions (Li et al., 1998; Li et al., 179 

2001; Mayama et al., 2004; Isaak et al., 2007; Liu et al., 2009; Kawazoe et al., 2013; Núñez-180 

Valdez et al., 2013). However, the single-crystal elasticity of wadsleyite was only evaluated 181 

at ambient conditions (Sawamoto et al., 1984; Sinogeikin et al., 1998) and pressures up to 14 182 

GPa at ambient temperature (Gwanmesia et al., 1990; Zha et al., 1997; Wang et al., 2014). 183 

Temperature effects on the single crystal elastic moduli of wadsleyite are unknown. Hence, 184 

due the lack of published single-crystal elastic properties of wadsleyite at high temperature, 185 

we decided to concentrate our analysis on isotropic properties for which the values of bulk 186 

and shear moduli are sufficient. We use the adiabatic aggregate bulk (Ks) and shear (G) 187 

moduli and their pressure derivatives reported by Wang et al. (2014) for an anhydrous iron-188 

bearing wadsleyite with [Fe]/[Fe+Mg] molar ratio of 0.075, and the temperature derivatives 189 

of Mayama et al. (2004). We then derive effective elastic properties for an isotropic aggregate 190 

of wadsleyite at the conditions of 410 km depth (Table 1). Finally, note that the elastic 191 

parameters we obtain differ from those proposed by Liu et al. (2009) by up to 20 GPa, which 192 

is the best resolution one can hope for at present. 193 

2.3. Deformations style 194 
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With imposed deformation, crystallites in the polycrystal will orient and generate Lattice 195 

Preferred Orientations (LPO), also known as texture. LPO evolution is essentially controlled 196 

by the macroscopic deformation, the initial texture, and the active plastic deformation 197 

mechanisms (Mainprice et al., 2005). 198 

As mentioned above, we concentrate on cases with anisotropy in the olivine stability field, 199 

above 410 km, and isotropy in the wadsleyite stability field, below 410 km. According to 200 

experimental data, the olivine to wadsleyite transformation may not preserve LPO across the 201 

410-km discontinuity (e.g., Smyth et al., 2012; Rosa et al., 2016). Indeed, although 202 

wadsleyite can nucleate at intracrystalline sites in olivine with well-defined orientation 203 

relationships, the lamellae act as nucleation sites for faster-growing incoherent wadsleyite 204 

grains with no orientation memory of the parent olivine grains (e.g., Rosa et al., 2016). Thus, 205 

in regions of downwelling, assuming LPO in olivine above the 410 km discontinuity and 206 

random texture (i.e. isotropy) below the 410 km discontinuity is a proper first-order 207 

approximation. 208 

We test two different classes of deformation geometries. First, we test the effect of axial 209 

compression applied to the olivine polycrystals above the 410 km discontinuity and the 210 

second class includes deformation in shear for both cases where the shear direction is 211 

horizontal (parallel to the discontinuity) or vertical (perpendicular to the discontinuity). In 212 

each case we assume an isotropic starting texture and let the LPO evolve with the imposed 213 

deformation. 214 

2.4. Calculation of olivine LPO 215 

Polycrystal LPO are simulated using polycrystal plasticity simulations utilizing the second-216 

order self-consistent model, initially proposed by Ponte Castañeda (2002) and extended by 217 

Detrez et al. (2015). This mean-field micromechanical model accounts for the slip systems at 218 
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the grain level and an isotropic relaxation mechanism. Olivine is lacking four independent 219 

slip systems at the grain level, which is necessary to accommodate any arbitrary plastic 220 

deformation in the aggregate. Hence, an additional relaxation mechanism is required but the 221 

microscopic origin of this additional relaxation mechanism is not known at this time although 222 

it could relate to mechanisms such as grain boundary sliding (e.g., Ohuchi et al., 2015) or 223 

disclinations (Cordier et al., 2014). The isotropic mechanism allows removing the fictitious 224 

<110>{111} slip system used in previous computations (e.g., Tommasi, 1998; Castelnau et 225 

al., 2008). Simulations are performed for a 1000 grains random starting aggregate. In 226 

compression, calculations are performed in steps of 1.25% axial strain up to a final strain of 227 

100%. Polycrystal LPO’s are saved at the start of the simulation, 25%, 50%, 75%, and 100% 228 

axial strain (Figure 2). Shear simulations are run in steps of 2.5% shear, up to a final shear 229 

strain of γ = 4 (400%). Textures are saved at the start of the simulation, and at γ = 1, 2, 3, 4. 230 

The dominant plastic deformation mechanism of olivine tend to change with the effect of 231 

water content, deviatoric stress, pressure and temperature (e.g., Mainprice et al., 2005; Jung 232 

et al., 2006; Raterron et al., 2014). Here, we hence design two plastic models for olivine at 233 

the conditions of 410 km. The first model is that of Raterron et al. (2014), at the conditions of 234 

405 km, with dominant slip along [001](010) (Table 2). In shear this model leads to B-type 235 

textures according to the classification of Jung et al. (2006). The second model is that of 236 

Tommasi (1998) with dominant slip on [100](010) (Table 2). In shear this model leads to A-237 

type textures. While the second model is typical for olivine deformed under low stress, low 238 

pressure, and low water content conditions the model from Raterron et al. (2014) is 239 

appropriate for how we believe olivine behaves deeper in a dry mantle. 240 

A number of studies suggest a different plastic behaviour between hydrous and anhydrous 241 

olivine (e.g. Jung et al, 2006, Ohuchi et al, 2017). Ohuchi et al (2017), for instance, showed 242 

that hydrous olivine is much weaker than dry olivine and that a significant portion of the 243 
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strain could be accommodated by dislocation accommodated grain boundary sliding, in 244 

conjunction with dominant [100] slip or on the [001](100) slip system. Simulations with 245 

dominant [001](100) slip system will result in other elastic constants than the two models 246 

above. Investigating this, however, goes beyond the goal of this paper and will require further 247 

future investigations.  248 

3. Reflection coefficient modelling across the 410 km discontinuity 249 

For a given deformation style, we calculate the polycrystalline elastic tensor of olivine in the 250 

Hill average (Hill, 1952) using the modeled texture and the single crystal elastic moduli of 251 

Table 1. Since we use an isotropic model for wadsleyite, the polycrystal elastic tensor is the 252 

same as that of the single-crystal. Densities for each phase are taken from the study of Inoue 253 

et al. (2004) and are listed in Table 1.  254 

We compute the reflection coefficient of the P and S waves reflected at the underside of the 255 

410 km discontinuity using the anisotropic raytracer ATRAK (Guest and Kendall, 1993) and 256 

the matlab toolkit MSAT (Walker and Wookey, 2012). The output of this tool is the velocity 257 

perturbations and the reflection coefficients across the discontinuity as a function of azimuth. 258 

Reflection coefficients of P and S waves depend strongly on the angle of incidence, i.e., on 259 

distance (Zoeppritz, 1919) and should therefore be computed for a range of incidence angles 260 

and as a function of azimuth. For each macroscopic deformation style and each olivine plastic 261 

model, we start the simulations with a random orientation for both olivine and wadsleyite 262 

crystals, and we then increase the alignment of the olivine grains with deformation. 263 

The reflection coefficients for isotropic olivine and wadsleyite are given in Figure 2.e (white 264 

circles) as starting texture and the results indicate that the P-wave reflection coefficient is 265 

negative for all incidence angles while the SH reflection coefficient is positive for incidence 266 

angles smaller than 53 degrees (epicentral distances larger than approx. 39 degrees) and 267 
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negative for larger incidence angles (epicentral distances smaller than approx. 39 degrees). In 268 

the following we focus especially on the results of the reflection coefficients modelling of P 269 

and S waves for the cases of axial compression, horizontal shear, and vertical shear and 270 

compare the deformed (anisotropic) cases to this isotropic reference case. 271 

4.Results 272 

4.1. Vertical compression 273 

The texture of CPO of olivine induced by the vertical compression is symmetric around the 274 

axis of applied deformation (see Figure 2.c). The calculation of P and SH wave reflection 275 

coefficients for the axial compression deformation hence leads to reflection coefficients that 276 

do not depend on azimuth (Figure 2.d). This is due to the symmetry of the deformation, 277 

which induces a symmetry on the polycrystalline texture and a hexagonal symmetry in the 278 

polycrystalline elastic tensor, whatever the plastic model used for olivine.  279 

We observe an overall constant negative reflection coefficient for P underside reflections 280 

with small amplitude variations depending on the applied deformation intensity for the two 281 

plastic models used for olivine and therefore similar to the isotropic reference case. 282 

Precursors would therefore have the same polarity as PP waves reflected off the surface. For 283 

SH underside reflections the level of applied deformation changes the incidence angle at 284 

which the polarity reversal occurs, and generally moves the polarity reversal for the reflection 285 

coefficient to larger incidence angles and therefore even shorter epicentral distances (Figure 286 

2.e).  287 

4.2. Horizontal shear deformation 288 

In a second step we investigate shear deformation in the form of horizontal and vertical shear. 289 

Figure 3 shows the textures associated with this deformation for two plastic models of olivine 290 
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based on Tommasi (1998) and Raterron et al. (2014) at 405 km depth, as explained before. 291 

While the textures for compression deformation exhibit similar strength for both models 292 

(Figure 4), in the case of shear deformation textures resulting from the plastic model of 293 

Tommasi (1998) are much stronger than those obtained with the model of Raterron et al. 294 

(2014) at 405 km (Figure 3). In both cases, the (010) planes align with the plane of shear. For 295 

the model of Tommasi (1998), the [100] directions align sub parallel to the shear direction 296 

whereas for the model of Raterron et al. (2014) at 405 km, the [001] directions align sub-297 

parallel to the shear direction. 298 

The results of reflection coefficient modelling for the case of horizontal shear using the B-299 

type slip system (Raterron et al., 2014, 405 km) are described in Figure 5. As before, we vary 300 

the incidence angles from 15
o
 to 65

o
 (Figure 5) and calculate reflection coefficients for 301 

varying azimuths. Since variations of the reflection coefficients of P and SH underside 302 

reflections with azimuth are visible (Figure 5.a), we display the reflection coefficients for 303 

three different directions: parallel to the direction of deformation (angle of 0 degrees), with 304 

an angle of 45 degrees to the direction of deformation and perpendicular to the deformation 305 

direction (90 degrees). 306 

Our results for the horizontal shear deformation again show negative P-wave reflection 307 

coefficients for the whole range of incidence angles with only slight variations with azimuth 308 

for different shear deformation. For the SH wave reflection coefficients we find a more 309 

pronounced behaviour: the variations of velocities due to applied deformation leads to a 310 

larger variation of the reflection coefficients of the SH wave with azimuth. Compared to the 311 

undeformed case we find reduced values in the direction of shear (azimuth of 0 degrees) and 312 

elevated values in the azimuth of 45 degrees and to a lesser extent at 90 degrees i.e., 313 

perpendicular to shear (Figure 5.a). This anisotropy leads to a change of amplitudes with 314 

propagation directions and hence influences the distance at which a polarity reversal occurs 315 
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for waves reflecting at the same point but in different propagation azimuths (Figure 5.b-d) 316 

which is not observed for the compression deformation style. This variation of azimuthally 317 

dependent reflection coefficient offers a possibility to test the presence of anisotropy using 318 

reflection coefficients of the reflected S waves from the underside of a boundary layer. 319 

Since the polarity change of the SH wave occurs at incidence angles between approximately 320 

40 to 60 degrees (Figure 5), we focus on this distance range to investigate the reflection 321 

coefficient of SH waves for two different shear deformations and the two deformation models 322 

from the studies of T-98 (Tommasi, 1998)  and R-14 (Raterron et al., 2014). Figure 6 shows 323 

the results: the reference case (white circles) with the change from positive to negative values 324 

for all cases at 39 degrees epicentral distance is given as comparison. For the vertical shear 325 

and for both models T-98 and R-14 the polarity reversal distances moves to smaller epicentral 326 

distances (larger angles of incidence) while still displaying directional variations. The 327 

extreme case is seen for vertical shear and the plastic olivine model T-98, for which the SH 328 

reflection coefficient remains positive over the whole range of 40 to 60 degrees 45 degrees 329 

away from the shear plane. For horizontal shear and the plastic model R-14, the polarity 330 

reversal happens at shorter epicentral distances than the isotropic case 45 degrees away from 331 

the shear direction while it does not significantly change in the other orientations. With the 332 

plastic model T-98, the polarity reversal is predicted at larger epicentral distance (smaller 333 

incidence angles) after shear deformation, which is the opposite of what is predicted for 334 

vertical shear. However, keeping in mind that SS underside reflections are usually studied at 335 

epicentral distance ranges of over 100 degrees(incidence angle of ~ 42 degrees) (e.g., 336 

Chambers et al., 2005; Schmerr and Garnero, 2006; Deuss, 2009; Zheng and Romanowicz, 337 

2012; Saki et al., 2015), the effects that one would measure at these distances would result in 338 

amplitude changes with direction only.  339 

5. Discussion  340 
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Flow in the mantle, through upwelling plumes and downgoing slabs, deforms mantle 341 

minerals and can lead to anisotropic behaviour (e.g., McNamara et al., 2003; Nippress et al., 342 

2004). Detecting and discriminating between different deformation styles may help to 343 

distinguish between different styles of subduction and may help to discriminate between slabs 344 

stagnating in the mantle transition zone and those that descend into lower mantle (e.g., van 345 

der Hilst et al., 1991; Fukao et al., 1992; Fukao and Obayashi, 2013; French and 346 

Romanowicz, 2015). Surface wave analysis (e.g., Kawasaki and Kon'no, 1984; Montagner, 347 

1998; Maupin and Park, 2007) and splitting measurements (e.g., Silver and Chan, 1991; Long 348 

and van der Hilst, 2005) have been employed to test anisotropy in the upper mantle but here 349 

we test another independent method of using body waves that reflect at a boundary layer and 350 

use directional variation of reflection coefficients to discriminate between different styles of 351 

deformation. Especially at boundary layers, where for example a mineral phase transition is 352 

generating reflected waves, this method can potentially provide useful information on 353 

anisotropy and deformation. 354 

We test our method on the case of underside reflections generated at the 410 km 355 

discontinuity, where the phase transition from olivine to wadsleyite occurs. In the layer above 356 

the discontinuity we use deformed olivine. Investigating anisotropy in the mantle transition 357 

zone, however, has to be carried out with detailed knowledge of the evolution of the LPO of 358 

polycrystalline olivine with increasing pressure and temperature simultaneously with the 359 

available elastic moduli of single crystal olivine (Mainprice et al., 2000; Mainprice, 2007). 360 

The LPO, slip systems, and plastic mechanisms of olivine, are difficult to study at deep 361 

mantle pressures and remain a matter of current debates (e.g., Jung and Karato, 2001a; Couvy 362 

et al., 2004; Katayama et al., 2004; Faul et al., 2011; Ohuchi et al., 2011; Hilairet et al., 2012; 363 

Ohuchi et al., 2015; Bollinger et al., 2016). The choice of a dominant slip system may hence 364 

change in future works and influence the results of the reflection coefficient modelling in our 365 
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study. Here, this effect has been investigated by testing two different plastic models of 366 

olivine, as suggested by Tommasi (1998) and Raterron et al. (2014).  367 

To test the feasibility of our method and for the simplest model, we have assumed wadsleyite 368 

to be isotropic. Some studies have discussed CPO of deformed wadsleyite (e.g., Demouchy et 369 

al., 2011; Kawazoe et al., 2013) and the nature of its dominating plastic mode (e.g., Thurel et 370 

al., 2003b; Ritterbex et al., 2016) that may contribute to transition zone anisotropy 371 

(Mohiuddin et al., 2015) and early experiments showed that wadsleyite may form a lattice 372 

preferred orientation (e.g., Thurel et al., 2003a; Tommasi et al., 2004). From a microscopic 373 

point of view, phase transformations can occur through two families of mechanisms, leading 374 

to coherent or incoherent orientations between the parent and daughter phases. Smyth et al. 375 

(2012) suggested that wadsleyite CPO can be partially inherited from pre-transformation 376 

olivine textures. Dissimilar to coherent orientation of the parent and daughter, loss of 377 

anisotropy through transformation is also discussed previously (e.g., Campbell, 2008), but 378 

since the elastic constants of wadsleyite at temperature and pressure corresponding to 410 km 379 

depth are currently not available for high shear strain, this type of transformation is difficult 380 

to test in our study. The only published values to our knowledge are by Kawazoe et al., 381 

(2013) with a shear strain of γ = 0.4. 382 

Assuming wadsleyite to be anisotropic would offer the case of having two anisotropic layers 383 

one above and one below the 410 km discontinuity, but  it would present a much more 384 

complicated first model. To make significant changes to the reflection coefficient, the 385 

alignment of wadsleyite would have to combine with the alignment of olivine to generate a 386 

reduction in velocity for one direction, which would result in a polarity change for all 387 

distances in this azimuthal direction.  388 
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Although the elastic constants of wadsleyite at pressure and temperature conditions of the 389 

410 km depth and at high shear strain are not available, we conduct a first test here and use 390 

values provided in the literature (Kawazoe et al., 2013).They provide a table with a set of 391 

polycrystalline elastic moduli for plastically deformed wadsleyite at 17.6 GPa, 1800 K, and 392 

gamma = 0.4. Note, however, that these elastic moduli were not measured at 17.6 GPa and 393 

1800 K. This set of elastic moduli was calculated based on the textures measured after 394 

deformation at 17.6 GPa and 1800 K and the single-crystal elastic constants measured by Zha 395 

et al (1997) at 14.2 GPa and room temperature. The effect of temperature on elasticity is, 396 

hence, not accounted for, possibly leading to a strong over-estimate of all elastic moduli and 397 

in particular for C11, C22, and C33. However, in the absence of other results on anisotropic 398 

wadsleyite at pressures and temperature of the 410 km discontinuity, we test this case to show 399 

the effect it has in our models. The results of the reflection coefficient modelling using this 400 

set of elastic constants are shown in Figure 7.  401 

We find that the changes in the S-wave reflection coefficient are similar to the ones for 402 

isotropic wadsleyite but the place where the polarity reversal happens occurs at longer 403 

epicentral distances. The P-wave polarity, however, changes sign for this case, which perhaps 404 

could be due to the larger elastic moduli C11, C22 and C33. More test with anisotropic 405 

wadsleyite to understand the effects on P-wave reflectivity will be necessary in the future, 406 

when more data on anisotropic wadsleyite become available. 407 

For the simplest setup model including isotropic wadsleyite, we chose the case of anhydrous 408 

iron-bearing wadsleyite in our study. Due to the high water storage capacity of wadsleyite up 409 

to 0.9%, water can be contained at 15 GPa and 1400
o
C (Demouchy et al., 2005), and it should 410 

be regarded as a parameter which may influence the elastic properties of wadsleyite. The 411 

effect of hydration on the elastic constants of wadsleyite is reported at ambient and high 412 

pressure conditions (e.g., Mao et al., 2008a, b). However, the existence of a significant water 413 
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reservoir in the mantle is still a matter of debate. In addition, the presence of a considerable 414 

amount of iron in all upper mantle minerals has been shown (Agee, 1998) and large number 415 

of studies have discussed the effect of Fe on the elasticity of olivine and wadsleyite (e.g., 416 

Duffy et al., 1995; Zha et al., 1996; Núñez-Valdez et al., 2011). For future work, cases with 417 

hydrous wadsleyite and varying amounts of iron would be useful. 418 

Results from our reflection coefficients modelling for P and SH waves at the underside of the 419 

interface between ansiotropic olivine and isotropic wadsleyite exhibit different pattern, 420 

depending on the applied deformation geometry on olivine. Our modelling shows that 421 

different deformation geometries do not create large amplitude variations for P wave 422 

reflections. The reflection coefficient of underside reflections of P
 
wave always exhibits 423 

negative polarities without any polarity reversal for all tested deformation geometries. 424 

However, the assumption of inheriting anisotropy through olivine-wadsleyite phase transition 425 

for a horizontal shear deformation would likely change the results. In Figure 7, we do observe 426 

polarity reversal of the P wave reflection coefficients at epicentral distances around 75 427 

degrees but more work is needed to constrain this effect with elastic constants of anisotropic 428 

wadsleyite measured at conditions of the mantle transition zone. Some polarity changes of PP 429 

underside reflections have been observed in previous studies (e.g., Courtier and Revenaugh, 430 

2007; Jasbinsek and Dueker, 2007; Thomas and Billen, 2009; Schmerr and Thomas, 2011) 431 

and previous suggestions for these polarity reversals include melt or metastable olivine 432 

wedges, but no conclusive interpretation has been given so far. Results from our modelling 433 

suggest that anisotropy in the olivine layer in combination with isotropic wadsleyite is likely 434 

not the cause for the observed polarity changes in PP precursors, however, more complicated 435 

models with anisotropic wadsleyite  could potentially explain the polarity reversal of PP 436 

waves.  437 
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The results of reflection coefficient modelling for SH wave show variations of the epicentral 438 

distance, where the sign of the reflection coefficients of SH underside reflections at the 410 439 

km discontinuity occurs. This effect is independent of having isotropic or anisotropic 440 

wadsleyite below the 410 km boundary. However, the case of deformed wadsleyite with 441 

shear strain of 0.4 shifts the epicentral distances range of polarity reversal to larger values 442 

(Figure 7). For the compressional geometry we find that the polarity reversal for the 443 

reflection coefficients of the SH wave changes with the percentage of applied compression 444 

but not with direction. For both horizontal and vertical shear deformations, however, the 445 

azimuth to the direction of imposed deformation plays an important role for the distance 446 

where the polarity of the reflected S wave changes sign, independent of the choice of the 447 

olivine dominant slip system (Figure 6). This provides a distinct difference between 448 

compression and shear deformation geometry and can act as discriminating factor for the 449 

detection of the style of deformation system at a boundary layer.  450 

Testing the results of our study with seismological data would provide direct information on 451 

deformation for different regions in the Earth, specifically at boundary layers. Modelling 452 

results for waves reflected at the D" layer (Thomas et al., 2011) showed that P and S waves 453 

varied strongly in amplitude and also polarity and a combination of both P and S waves is 454 

necessary to distinguish between different scenarios. In our study, the combination of 455 

anisotropic olivine and wadsleyite produces considerable effect on the behavior of the 456 

reflection coefficients of the P waves. While for the case of undeformed wadsleyite the P 457 

wave reflection coefficients show only small amplitude variations, anisotropic wadsleyite 458 

leads to a polarity reversal of the reflection coefficients at epicentral distances of about 70 459 

degrees. The  S wave reflection coefficients change amplitude and the distance at which a 460 

polarity reversal occurs for both cases of deformed and undeformed wadsleyite but at larger 461 

epicentral distances for the deformed wadsleyite case.  Alsodifferent deformation styles shift 462 
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the place, where polarity reversals of the reflection coefficient in SS waves occur, to shorter 463 

epicentral distances than the isotropic case except for the case of the T-98 model and 464 

horizontal shear where the polarity reversal occurs between 53 and 44 degrees epicentral 465 

distance.  466 

PP and SS underside reflections are generally studied in a distance range over 80 degrees 467 

(e.g., Shearer, 2000; Deuss, 2009; Saki et al., 2015). Here we would need SS underside 468 

reflections in a distance range of 30 to 40 degrees. While these reflections are in principle 469 

possible, the wavefield exhibits triplications in this distance range, making the use of SS 470 

underside reflections more difficult. In addition, the reflection coefficient is very small in the 471 

vicinity of the polarity reversal and the waves would be difficult to observe in real data. 472 

When using a deformed wadsleyite layer below an anisotropic olivine layer shifts the 473 

epicentral distance of polarity change range to higher values (~ 50-65 degrees) even for a 474 

small shear strain of 0.4 for wadsleyite. Considering deformed wadsleyite with high shear 475 

strains may therefore improve our results in terms of the epicentral distance range where the 476 

polarity reversal occur. While 65 degrees is still a low distance range for observing SS 477 

underside reflections, we show that it is in principle possible to detect S wave underside 478 

reflections off the 410 km boundary at epicentral distance between 50 to 60 degrees (Figure 479 

8). The vespagram (e.g., Rost and Thomas, 2002) generated from synthetic seismograms 480 

shows a clear S410S (including its depth phase) while the S660S precursor is partly 481 

interfering with the S coda.  482 

Even with the current limitations of the setup of our modelling, this study shows the 483 

possibility of using the azimuthal dependence of reflection coefficients of the SH underside 484 

reflections to study the deformation at the mantle transition zone boundaries. Our results, 485 

however, motivate further research of reflection coefficient modelling including an 486 

anisotropic wadsleyite layer with higher shear strain,effects of water and also extending the 487 
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modelling to the discontinuity at 660 km depth. While PP underside reflections off the 660 488 

km discontinuity are less well observed (e.g., Estabrook and Kind, 1996; Deuss, 2009; 489 

Thomas and Billen, 2009; Schmerr and Thomas, 2011; Lessing et al., 2014; Saki et al., 2015), 490 

SH underside reflections of the 660 km discontinuity are generally visible (e.g., Flanagan and 491 

Shearer, 1998; Schmerr and Garnero, 2006; Gu et al., 2012) and our modelling so far 492 

suggests that the SH underside reflections are mostly affected by the deformation. 493 

Comparison of the calculated reflection coefficients with suitable seismic data would provide 494 

further insight into the mantle transition zone mineralogy and deformation and the 495 

mechanisms responsible for waveform changes of underside reflections. 496 

6. Conclusions 497 

To study possible processes that may affect the polarity and amplitude variation of the 498 

underside reflections off the 410 km discontinuity, we model the reflection coefficients of P 499 

and SH waves reflected off an olivine-wadsleyite phase transition. We tested different 500 

deformation geometries including axial compression perpendicular to the boundary and shear 501 

deformations. For each, we calculate the reflection coefficients for incidence angles ranging 502 

from 15 to 65 degrees and all azimuths. The results indicate that P wave reflection 503 

coefficients always show negative values without any polarity reversal and with only weak 504 

variations in amplitude with the type and strength of applied deformation. The SH wave 505 

reflection coefficient for underside reflection undergoes a polarity reversal in the isotropic 506 

case, this polarity reversal is shifted to different epicentral distances when olivine is 507 

plastically deformed above the boundary. For shear deformation, the angle of incidence, i.e. 508 

the distance where the polarity reversal occurs changes also with azimuth. This can serve as 509 

discriminating factor and allows this method to be used as a diagnostic tool for identifying 510 

the style of deformation at boundary layers. For all deformation styles tested here the polarity 511 

change of SH waves occurs at short epicentral distances which are currently not used to 512 
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investigate upper mantle discontinuities. Further work needs to be carried out for two 513 

anisotropic layers, however, the lack of published single-crystal elasticity of wadsleyite at 514 

pressures and temperatures of the 410 km discontinuity is a strong limiting factor at the 515 

moment. As a first test, using published elastic parameters of wadsleyite shows that the effect 516 

of distance dependence for SH waves remains and shifts to larger epicentral distances while 517 

the P wave reflection coefficient also shows a polarity reversal. Further extension of the 518 

method to the 660 km discontinuity will help to better understand mantle dynamics and slab 519 

descend. 520 
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Figure 1: Schematic cartoon illustrating the effect of aligned minerals on the amplitude and polarity 867 

of the observed signals reflected off the 410 discontinuity, in different directions. This case describes 868 

an anisotropic layer of olivine which produces variable velocities in different directions (v1and v2), 869 

above an isotropic layer of wadsleyite with the same velocity in all directions (v3). The variation of 870 

velocity in different directions in the layer above give rise to variable amplitudes and perhaps 871 

polarities (indicated by the two waveforms).The dashed line shows the P410P/S410S path. The orange 872 

arrow represents the direction of deformation/shear that aligns the crystals above the 410 km 873 

discontinuity. 874 

Figure 2: Textures and predicted reflection coefficients for P and S waves as a function of azimuth. 875 

The reflection coefficients are modeled for P-P and SH-SH waves reflected off the underside of the 876 

410 km discontinuity. The textures are calculated using the plastic model of olivine of Raterron et al. 877 

(2014) at 405 km assuming vertical compression, perpendicular to the 410 km discontinuity. a) 878 

Macroscopic deformation in compression, with compression direction along the Z axis. b) Axes 879 

reference used for displaying textures in this Figure and in the following figures.  c) Olivine textures 880 

displayed for a random starting polycrystal (top row) and after 100% deformation (bottom row) in 881 

axial compression. The left, central and right panels show distribution probability for the orientation 882 

of axes [100], [010] and [001] in stereographic projection. d) P-P and SH-SH reflection coefficients as 883 

a function of azimuth (thick black curve)   for starting texture (non-deformed) (top row) and after 884 

100% axial deformation (bottom row) of the olivine layer. The reflection coefficients are calculated 885 

for P-P and SH-SH waves at an incident angle of 45o. . The reflection coefficient diagrams are colour 886 
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coded, blue and red areas indicate positive and negative reflection coefficients respectively. The thin 887 

black lines represent the size of the reflection coefficients plotted with the increment of 0.05, ranging 888 

from 0 to +0.1 for the positive reflection coefficients and from -0.l to 0 for the negative ones. The size 889 

of the reflection coefficients are measured from the zero line between the positive (blue color) and 890 

negative area (red color).e) P wave (top panel) and S wave (bottom panel) reflection coefficients 891 

(solid circles) for different levels of deformation displayed over the incidence angle range of 15 to 65 892 

degrees. Different levels of deformation are colour coded: white: starting texture, 25%, 50%, 75% and 893 

100% axial deformation are shown by green, blue, yellow and red colours. Black dashed and solid 894 

curves represent the fitted polynomial to the values of the SH-SH reflection coefficients for the 895 

starting texture and the case of 100% axial deformation, respectively. The distance values 896 

corresponding to the critical incidence angle where the polarity reversal occurs are marked for the 897 

starting texture (vertical black dashed line) and for the maximum case of 100% applied deformation 898 

(vertical black solid line). The epicentral distances that correspond to the incidence angles at the 410 899 

km discontinuity are marked by blue vertical dashed lines. Note that distances for the angles of 900 

incidence differ for P and S-waves. 901 

Figure 3: Comparison of the textures calculated using two olivine plastic models taken from the 902 

study of Raterron et al. (2014), at the conditions of 405 km depth, with dominant slip along 903 

[001](010) and that of Tommasi (1998) with dominant slip on [100](010). a) Horizontal shear 904 

deformation, shear direction along X axis with Z axis normal to the shear plane. b) Pole figures 905 

representing textures for γ(shear strain)=2 ( top row) and γ=4(bottom row) for olivine polycrystals for 906 

the model of Raterron et al. (2014).  (c) Same as (b) but for the model of Tommasi (1998). The left, 907 

central and right panels in each section show distribution probability of the orientations of axes [100], 908 

[010] and [001] in stereographic projection. 909 

Figure 4: Comparison of the textures calculated for deformation in axial compression  using two 910 

olivine plastic models taken from the study of a) Raterron et al. (2014), at the conditions of 405 km 911 

depth, with dominant slip along [001](010) and b) that of Tommasi (1998) with dominant slip on 912 

[100](010). Pole figures representing textures for the case of 100% imposed deformation. The left, 913 
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central and right panels in each section show distribution probability for the orientation of axes [100], 914 

[010] and [001] in stereographic projection. 915 

Figure 5: Predicted reflection coefficients of P and S waves reflected off the underside of the 410 916 

km discontinuity when olivine is deformed in horizontal shear as a function of azimuth and using 917 

suggested dominant slip system of olivine taken from the study of Raterron et al. (2014). a) P-P and 918 

SH-SH reflection coefficients (black curve) for isotropic case (top row) and γ=4.0 (bottom row). The 919 

incidence angle for these cases is 55 degrees. The blue and red colour and the thin black lines are the 920 

same as described in Figure 2.d. (b,c,d) P wave (left panel) and S waves (right panel) reflection 921 

coefficients (solid circles) for isotropic olivine and after γ=4.0 deformation displayed over the 922 

incidence angle range of 15 to 65 degrees for the cases of azimuths parallel (b), 45 degrees (c) and  923 

perpendicular (d)  to the direction of deformation. Different levels of deformations are colour coded: 924 

starting texture and γ=4.0 are shown by white and red circles, respectively. Dashed and solid curves 925 

represents the fitted polynomials to the values of the SH-SH reflection coefficients for the cases of the 926 

isotropic model and γ=4.0, respectively. The distance value corresponding to the incidence angle 927 

where the polarity reversal occurs are shown for the isotropic case (vertical dashed line) and for a 928 

shear strain of γ= 4.0 (vertical solid line). 929 

Figure 6: Comparison of the S wave reflection coefficients for olivine deformed in horizontal and 930 

vertical shear using two different dominant slip systems for olivine. a) Predicted reflection coefficient 931 

of SH wave for a horizontal shear system (solid circles), modeled using Raterron et al. (2014) (R-14) 932 

plastic model of olivine shown for the incidence angle range of 15 to 65 degrees.  b) SH wave 933 

reflection coefficient for a horizontal and vertical shear system displayed over the incidence angle 934 

range of 40 to 60 degrees using (R-14) and Tommasi (1998) (T-98) plastic models for olivine. 935 

Reflection coefficients are shown for the cases of azimuths parallel (top row), 45 degrees (middle 936 

row) and 90 degrees to the direction of deformation (bottom row) (horizontal shear) or normal to the 937 

shear plane (vertical shear). 938 
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Figure 7: Predicted reflection coefficients of P and S waves reflected off the 410 km discontinuity as 939 

a function of azimuth and using the dominant slip system of olivine taken from the study of Raterron 940 

et al. (2014). Olivine and wadsleyite are deformed in horizontal shear with shear strain of γ = 4.0 and 941 

γ =0.4, respectively. a) P wave (left panel) and S waves (right panel) reflection coefficients (solid 942 

circles) displayed over the incidence angle range of 15 to 65 degrees for three cases of : isotropic 943 

olivine and wadsleyite (white circles), deformed olivine with shear strain of γ =4.0 and isotropic 944 

wadselyite (red circles) and for deformed olivine with shear strain of γ =4.0 and wadsleyite with shear 945 

strain of γ =0.4 (blue circles). The reflection coefficients are shown for the azimuths parallel (a), 45 946 

degrees (b) and perpendicular (c) to the direction of deformation. Fitted polynomials to the values of 947 

the SH-SH reflection coefficients are shown for the cases of the isotropic model (dashed), deformed 948 

olivine with γ =4.0 and isotropic wadsleyite (solid) and deformed olivine with γ =4.0  and wadsleyite 949 

with γ =0.4 (dashed-dotted). The distance value corresponding to the incidence angle where the 950 

polarity reversal occurs are shown for the isotropic case (vertical dashed line), deformed olivine (γ 951 

=4.0) and isotropic wadsleyite (vertical solid line) and deformed olivine (γ =4.0) and wadsleyite (γ 952 

=0.4) (vertical dashed-dotted line). The epicentral distances that correspond to the right most and left 953 

most vertical lines are indicated. 954 

Figure 8: Synthetic vespagram (e.g., Rost and Thomas, 2002) for the transverse component of a 955 

synthetic event in 50 to 60 degrees distance and a depth of 50 km calculated using the reflectivity 956 

method (Müller, 1985). The synthetic seismograms are computed using the velocity model ak135. 957 

The arrival times and slowness values of the S, SS, SS precursors, ScS waves as well as their depth 958 

phases, predicted for ak135 are indicated. 959 

Table 1: Elastic parameters for olivine and wadsleyite at 410 km depth. For olivine, we use the full 960 

set of anisotropic single-crystal elastic moduli based on available literature data of Mao et al. (2015). 961 

Here, wadsleyite is assumed to be isotropic due to the lack of available data at high temperature. 962 

Table 2: Plastic models for olivine. Model 1 is adopted from Raterron et al. (2014) at 405 km depth 963 

and model 2 is from Tommasi (1998). For each, the table indicates the relative critical resolved shear 964 
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stresses (CRSS) of each plastic deformation mechanism as well as the relative activities of each 965 

deformation mode after 50% axial compression and at a shear strain of γ =1. For both plastic models, 966 

the CRSS of the isotropic relaxation mechanism was adjusted so that it accommodates 40 to 50% of 967 

the effective plastic activity. Stars indicate plastic modes that were not included in the simulation. 968 
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Figure  5 982 
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Table 1 991 

Cij (GPa)- ρ(g/cm3) Olivine (single-crystal) Wadsleyite (single-crystal) 

C11 

C22 

C33 

C44 

C55 

C66 

C12 

C13 

349 

219 

250 

68 

78 

75 

84 

93 

337 

 

 

½(C11-C12) 

 

 

 

130 
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C23 98  

Density (ρ) 3.42 3.60 
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 993 

Table 2 994 

 Model 1 (R-14) Model 2 (T-98) 

Mechanism CRSS 

Effective activity 

CRSS 

Effective activity 

Compression Shear Compression Shear 

[100](010) 42 9% 7% 10 20% 24% 

[001](010) 15 25% 23% 20 25% 13% 

[001](100) 46 2% 3% 30 1% 1% 

[100](001) 56 1% 2% 10 14% 20% 

[100]{011} * * * 40 1% 1% 

[100]{021} 42 14% 11% * * * 

[100]{031} * * * 40 1% 1% 

[001]{110} 45 5% 6% 60 0% 0% 

Isotropic 200 44% 48% 150 39% 40% 
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