6,128 research outputs found

    Electron diffraction of tilted perovskites

    Get PDF
    Simulations of electron diffraction patterns for each of the known perovskite tilt systems have been performed. The conditions for the appearance of superlattice reflections arising from rotations of the octahedra are modified to take into account the effects of different tilt systems for kinematical diffraction. The use of selected-area electron diffraction as a tool for perovskite structure determination is reviewed and examples are included

    AgNb7O18 : an ergodic relaxor ferroelectric

    Get PDF
    AgNb7O18 is an ergodic relaxor ferroelectric at room temperature with an incipient transition to the nonergodic state. Electron diffraction confirms a locally polar symmetry, while X-ray diffraction perceives a nonpolar structure. All ions are repelled away from zones where NbO6 octahedra are edge-sharing

    Ferroelectricity in the xAg2Nb4O11–(1−x)Na2Nb4O11 solid solution

    Get PDF
    Compositions in the (AgxNa1-x)2Nb4O11 solid solution have been prepared by a conventional solid state method. Composites containing Ag2Nb4O11 have been shown to be ferroelectric and the Curie temperature shown to decrease from 149 °C at x = 1 to 62 °C at x = 0.7. Roomtemperature compositions with x ≤ 0.7 are monoclinic, while those with x ≥ 0.8 are rhombohedral with structures consistent with the relevant end-members. At x = 0.75, the structure was mainly rhombohedral but with coexistence of the monoclinic structure, indicating the proximity of a phase boundary

    Towards 'smart lasers': self-optimisation of an ultrafast pulse source using a genetic algorithm

    Full text link
    Short-pulse fibre lasers are a complex dynamical system possessing a broad space of operating states that can be accessed through control of cavity parameters. Determination of target regimes is a multi-parameter global optimisation problem. Here, we report the implementation of a genetic algorithm to intelligently locate optimum parameters for stable single-pulse mode-locking in a Figure-8 fibre laser, and fully automate the system turn-on procedure. Stable ultrashort pulses are repeatably achieved by employing a compound fitness function that monitors both temporal and spectral output properties of the laser. Our method of encoding photonics expertise into an algorithm and applying machine-learning principles paves the way to self-optimising `smart' optical technologies

    Dark solitons in laser radiation build-up dynamics

    Get PDF
    We reveal the existence of slowly-decaying dark solitons in the radiation build-up dynamics of bright pulses in all-normal dispersion mode-locked fiber lasers, numerically modeled in the framework of a generalized nonlinear Schr\"odinger equation. The evolution of noise perturbations to quasi-stationary dark solitons is examined, and the significance of background shape and soliton-soliton collisions on the eventual soliton decay is established. We demonstrate the role of a restoring force in extending soliton interactions in conservative systems to include the effects of dissipation, as encountered in laser cavities, and generalize our observations to other nonlinear systems

    Genetic algorithm-based control of birefringent filtering for self-tuning, self-pulsing fiber lasers

    Full text link
    Polarization-based filtering in fiber lasers is well-known to enable spectral tunability and a wide range of dynamical operating states. This effect is rarely exploited in practical systems, however, because optimization of cavity parameters is non-trivial and evolves due to environmental sensitivity. Here, we report a genetic algorithm-based approach, utilizing electronic control of the cavity transfer function, to autonomously achieve broad wavelength tuning and the generation of Q-switched pulses with variable repetition rate and duration. The practicalities and limitations of simultaneous spectral and temporal self-tuning from a simple fiber laser are discussed, paving the way to on-demand laser properties through algorithmic control and machine learning schemes.Comment: Accepted for Optics Letters, 12th June 201

    Mode-locked dysprosium fiber laser: picosecond pulse generation from 2.97 to 3.30 {\mu}m

    Full text link
    Mode-locked fiber laser technology to date has been limited to sub-3 {\mu}m wavelengths, despite significant application-driven demand for compact picosecond and femtosecond pulse sources at longer wavelengths. Erbium- and holmium-doped fluoride fiber lasers incorporating a saturable absorber are emerging as promising pulse sources for 2.7--2.9 {\mu}m, yet it remains a major challenge to extend this coverage. Here, we propose a new approach using dysprosium-doped fiber with frequency shifted feedback (FSF). Using a simple linear cavity with an acousto-optic tunable filter, we generate 33 ps pulses with up to 2.7 nJ energy and 330 nm tunability from 2.97 to 3.30 {\mu}m (3000--3400 cm^-1)---the first mode-locked fiber laser to cover this spectral region and the most broadly tunable pulsed fiber laser to date. Numerical simulations show excellent agreement with experiments and also offer new insights into the underlying dynamics of FSF pulse generation. This highlights the remarkable potential of both dysprosium as a gain material and FSF for versatile pulse generation, opening new opportunities for mid-IR laser development and practical applications outside the laboratory.Comment: Accepted for APL Photonics, 22nd August 201

    HRTEM study of a new non-stoichiometric BaTiO(3-δ) structure

    Get PDF
    BaTiO3-based multilayer ceramic capacitors (MLCCs) with Ni internal electrodes are co-fired in reducing atmospheres to avoid oxidation of the electrode. Although dielectric materials are doped by acceptor, donor and amphoteric dopants to minimize the oxygen vacancy content, there is still a large concentration of oxygen vacancies that are accommodated in the BaTiO3 active layers. In general, ABO3 perovskites demonstrates a strong ability to accommodate the oxygen vacancies and maintain a regular pseudo-cubic structure. Oxygen deficient barium titanate can be transformed to a hexagonal polymorph (h-BT) at high temperatures1,2. In this paper, we report the new modulated and long range ordered structures of non-stoichiometric BaTiO3-δ that are observed in the electrically degraded Ni-BaTiO3 MLCCs at low temperature
    • …
    corecore