249 research outputs found

    Enteric helminths promote Salmonella co-infection by altering the intestinal metabolome

    Get PDF
    Intestinal helminth infections occur pre dominantly in regions where exposure to enteric bacterial pathogens is also common. Helminth infections inhibit host immunity against microbial pathogens, which has largely been attributed to the induction of regulatory or type 2 (Th2) immune responses. Here we demonstrate an additional three-way interaction in which helminth infection alters the metabolic environment of the host intestine to enhance bacterial pathogenicity. We show that an ongoing helminth infection increased colonization by Salmonella independently of T regulatory or Th2 cells. Instead, helminth infection altered the metabolic profile of the intestine, which directly enhanced bacterial expression of Salmonella pathogenicity island 1 (SPI-1) genes and increased intracellular invasion. These data reveal a novel mechanism by which a helminth-modified metabolome promotes susceptibility to bacterial co-infection

    The Avon Longitudinal Study of Parents and Children - A resource for COVID-19 research:Antibody testing results, April – June 2021

    Get PDF
    The Avon Longitudinal Study of Parents and Children (ALSPAC) is a prospective population-based cohort which recruited pregnant women in 1990-1992 and has followed these women, their partners (Generation 0; G0) and their offspring (Generation 1; G1) ever since. The study reacted rapidly and repeatedly to the coronavirus disease 2019 (COVID-19) pandemic, deploying multiple online questionnaires and a previous home-based antibody test in October 2020. A second antibody test, in collaboration with ten other longitudinal population studies, was completed by 4,622 ALSPAC participants between April and June 2021. Of 4,241 participants with a valid spike protein antibody test result (8.2% were void), indicating antibody response to either COVID-19 vaccination or natural infection, 3,172 were positive (74.8%). Generational differences were substantial, with 2,463/2,555 G0 participants classified positive (96.4%) compared to 709/1,686 G1 participants (42.1%). Of 4,199 participants with a valid nucleocapsid antibody test result (9.2% were void), suggesting potential and recent natural infection, 493 were positive (11.7%); 248/2,526 G0 participants (9.8%) and 245/1,673 G1 participants (14.6%) tested positive, respectively. We also compare results for this round of testing to that undertaken in October 2020. Future work will combine these test results with additional sources of data to identify participants’ COVID-19 infection and vaccination status. These ALSPAC COVID-19 serology data are being complemented with linkage to health records and Public Health England pillar testing results as they become available, in addition to four previous questionnaire waves and a prior antibody test. Data have been released as an update to the previous COVID-19 datasets. These comprise: 1) a standard dataset containing all participant responses to all four previous questionnaires with key sociodemographic factors; and 2) individual participant-specific release files enabling bespoke research across all areas supported by the study. This data note describes the second ALSPAC antibody test and the data obtained from it

    Late-Stage Diagenetic Concretions in the Murray Formation, Gale Crater, Mars

    Get PDF
    Concretions are prevalent features in the generally lacustrine deposits of the Murray formation in Gale crater. In this work, we document the morphologic, textural, and chemical properties of these concretions throughout 300 m of Murray formation stratigraphy from Mars Science Laboratory observations between Sols 750–1900. We interpret these observations to constrain the timing and composition of post-depositional fluid events at Gale crater. We determine that the overall diversity of concretion morphology, size, texture, and chemistry throughout the Murray formation indicates that concretions formed in multiple, likely late diagenetic, episodes with varying fluid chemistries. Four major concretion assemblages are observed at distinct stratigraphic intervals and approximately correlate with major distinct chemical enrichments in Mg-S-Ni-Cl, Mn-P, and Ca-S, among other local enrichments. Different concretion size populations and complex relationships between concretions and veins also suggest multiple precipitation events at Gale crater. Many concretions likely formed during late diagenesis after sediment compaction and lithification, based on observations of concretions preserving primary host rock laminations without differential compaction. An upsection decrease in overall concretion size corresponds to an inferred upsection decrease in porosity and permeability, thus constraining concretion formation as postdating fluid events that produced initial cementation and porosity loss. The combined observations of late diagenetic concretions and distinct chemical enrichments related to concretions allow constraints to be placed on the chemistry of late stage fluids at Gale crater. Collectively, concretion observations from this work and previous studies of other diagenetic features (veins, alteration halos) suggest at least six post-depositional events that occurred at Gale crater after the deposition of the Murray formation

    Towards clinical translation of 7 Tesla MRI in the human brain

    Get PDF
    Clinical translation of 7 tesla (T) MRI of the brain promises high image quality and potentially improved clinical diagnosis for patients compared to current standard lower field-strength MRI at 1.5 and 3T. Here we describe how physics principles underlying ultra-high field (UHF) strength MRI affect 7T image quality, and how these can be exploited to translate 7T brain imaging into clinical practice. UHF MRI profits from higher inherent signal-to-noise ratio (SNR) and a resultant increase in achievable spatial resolution or acceleration factors; increase in sensitivity to magnetic susceptibility differences and a higher amplitude of the Blood Oxygen Level Dependent (BOLD) signal; increase in longitudinal relaxation time; and increased frequency dispersion and spectral resolution in MR spectroscopy. Examples are presented of different brain pathologies, which are better illustrated on 7T compared to lower field strength by applying sequences and imaging techniques that exploit these intrinsic strengths of 7T MRI. This includes imaging of various vascular pathologies, epilepsy and brain tumours

    Design of a Potent, Selective, and Brain-Penetrant Inhibitor of Wnt-Deactivating Enzyme Notum by Optimization of a Crystallographic Fragment Hit

    Get PDF
    Notum is a carboxylesterase that suppresses Wnt signaling through deacylation of an essential palmitoleate group on Wnt proteins. There is a growing understanding of the role Notum plays in human diseases such as colorectal cancer and Alzheimer's disease, supporting the need to discover improved inhibitors, especially for use in models of neurodegeneration. Here, we have described the discovery and profile of 8l (ARUK3001185) as a potent, selective, and brain-penetrant inhibitor of Notum activity suitable for oral dosing in rodent models of disease. Crystallographic fragment screening of the Diamond-SGC Poised Library for binding to Notum, supported by a biochemical enzyme assay to rank inhibition activity, identified 6a and 6b as a pair of outstanding hits. Fragment development of 6 delivered 8l that restored Wnt signaling in the presence of Notum in a cell-based reporter assay. Assessment in pharmacology screens showed 8l to be selective against serine hydrolases, kinases, and drug targets

    Prediction of Breast Cancer-Related Lymphedema By Dermal Backflow Detected With Near-infrared Fluorescence Lymphatic Imaging

    Get PDF
    PURPOSE: Mild breast cancer-related lymphedema (BCRL) is clinically diagnosed as a 5%-10% increase in arm volume, typically measured no earlier than 3-6 months after locoregional treatment. Early BCRL treatment is associated with better outcomes, yet amid increasing evidence that lymphedema exists in a latent form, treatment is typically delayed until arm swelling is obvious. In this study, we investigated whether near-infrared fluorescence lymphatic imaging (NIRF-LI) surveillance could characterize early onset of peripheral lymphatic dysfunction as a predictor of BCRL. METHODS: In a prospective, longitudinal cohort/observational study (NCT02949726), subjects with locally advanced breast cancer who received axillary lymph node dissection and regional nodal radiotherapy (RT) were followed serially, between 2016 and 2021, before surgery, 4-8 weeks after surgery, and 6, 12, and 18 months after RT. Arm volume was measured by perometry, and lymphatic (dys) function was assessed by NIRF-LI. RESULTS: By 18 months after RT, 30 of 42 study subjects (71%) developed mild-moderate BCRL (i.e., ≥ 5% arm swelling relative to baseline), all manifested by dermal backflow of lymph into lymphatic capillaries or interstitial spaces. Dermal backflow had an 83% positive predictive value and 86% negative predictive value for BCRL, with a sensitivity of 97%, specificity of 50%, accuracy of 83%, positive likelihood ratio of 1.93, negative likelihood ratio of 0.07, and odds ratio of 29.00. Dermal backflow appeared on average 8.3 months, but up to 23 months, before the onset of mild BCRL. CONCLUSION: BCRL can be predicted by dermal backflow, which often appears months before arm swelling, enabling early treatment before the onset of edema and irreversible tissue changes

    Gut microbes shape microglia and cognitive function during malnutrition

    Get PDF
    Fecal-oral contamination promotes malnutrition pathology. Lasting consequences of early life malnutrition include cognitive impairment, but the underlying pathology and influence of gut microbes remain largely unknown. Here, we utilize an established murine model combining malnutrition and iterative exposure to fecal commensals (MAL-BG). The MAL-BG model was analyzed in comparison to malnourished (MAL mice) and healthy (CON mice) controls. Malnourished mice display poor spatial memory and learning plasticity, as well as altered microglia, non-neuronal CNS cells that regulate neuroimmune responses and brain plasticity. Chronic fecal-oral exposures shaped microglial morphology and transcriptional profile, promoting phagocytic features in MAL-BG mice. Unexpectedly, these changes occurred independently from significant cytokine-induced inflammation or blood-brain barrier (BBB) disruption, key gut-brain pathways. Metabolomic profiling of the MAL-BG cortex revealed altered polyunsaturated fatty acid (PUFA) profiles and systemic lipoxidative stress. In contrast, supplementation with an ω3 PUFA/antioxidant-associated diet (PAO) mitigated cognitive deficits within the MAL-BG model. These findings provide valued insight into the malnourished gut microbiota-brain axis, highlighting PUFA metabolism as a potential therapeutic target
    • …
    corecore