10,543 research outputs found
Improved method for aerodynamic analysis of wing-body-tail configurations in subsonic and supersonic flow
Method permits analysis of noncircular bodies and calculation of wing-body interference effects in presence of body closure, two features not previously available. In addition, use of vortex distribution, having linear variation in streamwise direction, results in improved chordwise pressure distributions on wing and tail surfaces
Calibration and comparison of chlorine decay models for a test water distribution system
This paper investigates the kinetics of monochloramine as disinfectant in a 1.3 km water pipe. A novel procedure for the correction of chlorine meter errors is introduced and applied. Parameter estimation using nonlinear optimisation procedures is used to identify decay coefficients for monochloramine models with a single coefficient or two coefficients as used in EPANET. Important difficulties in fitting these parameters which come about because of the model structure are highlighted. Finally, results of
decay coefficients are presented and investigated for flow, inlet chlorine concentration and temperature dependence
Infrared Observations of novae in the SOFIA era
Classical novae inject chemically enriched gas and dust into the local
inter-stellar medium (ISM). Abundances in the ejecta can be deduced from
infrared (IR) forbidden line emission. IR spectroscopy can determine the
mineralogy of grains that grow in nova ejecta. We anticipate the impact that
NASA's new Stratospheric Observatory for Infrared Astronomy (SOFIA) will have
on future IR studies of novae.Comment: To appear in the proceedings of "Physics of Evolved Stars 2015 - A
conference dedicated to the memory of Olivier Chesneau
The circumstellar dust of "Born-Again" stars
We describe the evolution of the carbon dust shells around Very Late Thermal
Pulse (VLTP) objects as seen at infrared wavelengths. This includes a 20-year
overview of the evolution of the dust around Sakurai's object (to which Olivier
made a seminal contribution) and FG Sge. VLTPs may occur during the endpoint of
as many as 25% of solar mass stars, and may therefore provide a glimpse of the
possible fate of the Sun.Comment: To appear in the proceedings of "Physics of Evolved Stars 2015 - A
conference dedicated to the memory of Olivier Chesneau
HRTEM study of a new non-stoichiometric BaTiO(3-δ) structure
BaTiO3-based multilayer ceramic capacitors (MLCCs) with Ni internal electrodes are co-fired in
reducing atmospheres to avoid oxidation of the electrode. Although dielectric materials are doped by
acceptor, donor and amphoteric dopants to minimize the oxygen vacancy content, there is still a
large concentration of oxygen vacancies that are accommodated in the BaTiO3 active layers. In
general, ABO3 perovskites demonstrates a strong ability to accommodate the oxygen vacancies and
maintain a regular pseudo-cubic structure. Oxygen deficient barium titanate can be transformed to a
hexagonal polymorph (h-BT) at high temperatures1,2. In this paper, we report the new modulated and
long range ordered structures of non-stoichiometric BaTiO3-δ that are observed in the electrically
degraded Ni-BaTiO3 MLCCs at low temperature
Environmental effects of SPS: The middle atmosphere
The heavy lift launch vehicle associated with the solar power satellite (SPS) would deposit in the upper atmosphere exhaust and reentry products which could modify the composition of the stratosphere, mesosphere, and lower ionosphere. In order to assess such effects, atmospheric model simulations were performed, especially considering a geographic zone centered at the launch and reentry latitudes
Long-term storage and age‐biased export of fluvial organic carbon: field evidence from West Iceland
Terrestrial organic carbon (OC) plays an important role in the carbon cycle, but questions remain regarding the controls and timescale(s) over which atmospheric CO₂ remains sequestered as particulate OC (POC). Motivated by observations that terrestrial POC is physically stored within soils and other shallow sedimentary deposits, we examined the role that sediment storage plays in the terrestrial OC cycle. Specifically, we tested the hypothesis that sediment storage impacts the age of terrestrial POC. We focused on the Efri Haukadalsá River catchment in Iceland as it lacks ancient sedimentary bedrock that would otherwise bias radiocarbon‐based determinations of POC storage duration by supplying pre‐aged “petrogenic” POC.
Our radiocarbon measurements of riverine suspended sediments and deposits implicated millennial‐scale storage times. Comparison between the sample types (suspended and deposits) suggested an age offset between transported (suspended sediments) and stored (deposits) POC at the time of sampling, which is predicted by theory for the sediment age distribution in floodplains. We also observed that POC in suspended sediments is younger than the predicted mean storage duration generated from independent geomorphological data, which suggested an additional role for OC cycling. Consistent with this, we observed interparticle heterogeneity in the composition of POC by imaging our samples at the microscale using X‐ray absorption spectroscopy. Specifically, we found that particles within individual samples differed in their sulfur oxidation state, which is indicative of multiple origins and/or diagenetic histories. Altogether, our results support recent coupled sediment storage and OC cycling models and indicate that the physical drivers of sediment storage are important factors controlling the cadence of carbon cycling
Density functional approach for inhomogeneous star polymers
We propose microscopic density functional theory for inhomogeneous star
polymers. Our approach is based on fundamental measure theory for hard spheres,
and on Wertheim's first- and second-order perturbation theory for the
interparticle connectivity. For simplicity we consider a model in which all the
arms are of the same length, but our approach can be easily extended to the
case of stars with arms of arbitrary lengths.Comment: 4 pages, 3 figures, submitte
Octahedral Tilt Instability of ReO_3-type Crystals
The octahedron tilt transitions of ABX_3 perovskite-structure materials lead
to an anti-polar (or antiferroelectric) arrangement of dipoles, with the low
temperature structure having six sublattices polarized along various
crystallographic directions. It is shown that an important mechanism driving
the transition is long range dipole-dipole forces acting on both displacive and
induced parts of the anion dipole. This acts in concert with short range
repulsion, allowing a gain of electrostatic (Madelung) energy, both
dipole-dipole and charge-charge, because the unit cell shrinks when the hard
ionic spheres of the rigid octahedron tilt out of linear alignment.Comment: 4 page with 3 figures included; new version updates references and
clarifies the argument
- …