28 research outputs found

    All in the timing: Epigenetic control of greening

    No full text
    This article is a Commentary on Islam et al. (2021), 231: 1023–1039 in the New Phytologist.12 month embargo; first published: 14 June 2021This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Targeted for destruction: Degradation of singlet oxygen-damaged chloroplasts

    No full text
    Photosynthesis is an essential process that plants must regulate to survive in dynamic environments. Thus, chloroplasts (the sites of photosynthesis in plant and algae cells) use multiple signaling mechanisms to report their health to the cell. Such signals are poorly understood but often involve reactive oxygen species (ROS) produced from the photosynthetic light reactions. One ROS, singlet oxygen (1O2), can signal to initiate chloroplast degradation, but the cellular machinery involved in identifying and degrading damaged chloroplasts (i.e., chloroplast quality control pathways) is unknown. To provide mechanistic insight into these pathways, two recent studies have investigated degrading chloroplasts in the Arabidopsis thaliana 1O2 over-producing plastid ferrochelatase two (fc2) mutant. First, a structural analysis of degrading chloroplasts was performed with electron microscopy, which demonstrated that damaged chloroplasts can protrude into the central vacuole compartment with structures reminiscent of fission-type microautophagy. 1O2-stressed chloroplasts swelled before these interactions, which may be a mechanism for their selective degradation. Second, the roles of autophagosomes and canonical autophagy (macroautophagy) were shown to be dispensable for 1O2-initiated chloroplast degradation. Instead, putative fission-type microautophagy genes were induced by chloroplast 1O2. Here, we discuss how these studies implicate this poorly understood cellular degradation pathway in the dismantling of 1O2-damaged chloroplasts.12 month embargo; published online: 08 June 2022This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    The Thiamine Kinase (YcfN) Enzyme Plays a Minor but Significant Role in Cobinamide Salvaging in Salmonella entericaâ–¿

    No full text
    Cobinamide (Cbi) salvaging is impaired, but not abolished, in a Salmonella enterica strain lacking a functional cobU gene. CobU is a bifunctional enzyme (NTP:adenosylcobinamide [NTP:AdoCbi] kinase, GTP:adenosylcobinamide-phosphate [GTP:AdoCbi-P] guanylyltransferase) whose AdoCbi kinase activity is necessary for Cbi salvaging in this bacterium. Inactivation of the ycfN gene in a ΔcobU strain abrogated Cbi salvaging. Introduction of a plasmid carrying the ycfN+ allele into a ΔcobU ΔycfN strain substantially restored Cbi salvaging. Mass spectrometry data indicate that when YcfN-enriched cell extracts were incubated with AdoCbi and ATP, the product of the reaction was AdoCbi-P. Results from bioassays confirmed that YcfN converted AdoCbi to AdoCbi-P in an ATP-dependent manner. YcfN is a good example of enzymes that are used by the cell in multiple pathways to ensure the salvaging of valuable precursors

    The cbiS Gene of the Archaeon Methanopyrus kandleri AV19 Encodes a Bifunctional Enzyme with Adenosylcobinamide Amidohydrolase and α-Ribazole-Phosphate Phosphatase Activities

    No full text
    Here we report the initial biochemical characterization of the bifunctional α-ribazole-P (α-RP) phosphatase, adenosylcobinamide (AdoCbi) amidohydrolase CbiS enzyme from the hyperthermophilic methanogenic archaeon Methanopyrus kandleri AV19. The cbiS gene encodes a 39-kDa protein with two distinct segments, one of which is homologous to the AdoCbi amidohydrolase (CbiZ, EC 3.5.1.90) enzyme and the other of which is homologous to the recently discovered archaeal α-RP phosphatase (CobZ, EC 3.1.3.73) enzyme. CbiS function restored AdoCbi salvaging and α-RP phosphatase activity in strains of the bacterium Salmonella enterica where either step was blocked. The two halves of the cbiS genes retained their function in vivo when they were cloned separately. The CbiS enzyme was overproduced in Escherichia coli and was isolated to >95% homogeneity. High-performance liquid chromatography, UV-visible spectroscopy, and mass spectroscopy established α-ribazole and cobyric acid as the products of the phosphatase and amidohydrolase reactions, respectively. Reasons why the CbiZ and CobZ enzymes are fused in some archaea are discussed

    DataSheet_2_A genetic screen for dominant chloroplast reactive oxygen species signaling mutants reveals life stage-specific singlet oxygen signaling networks.xlsx

    No full text
    IntroductionPlants employ intricate molecular mechanisms to respond to abiotic stresses, which often lead to the accumulation of reactive oxygen species (ROS) within organelles such as chloroplasts. Such ROS can produce stress signals that regulate cellular response mechanisms. One ROS, singlet oxygen (1O2), is predominantly produced in the chloroplast during photosynthesis and can trigger chloroplast degradation, programmed cell death (PCD), and retrograde (organelle-to-nucleus) signaling. However, little is known about the molecular mechanisms involved in these signaling pathways or how many different signaling 1O2 pathways may exist.MethodsThe Arabidopsis thaliana plastid ferrochelatase two (fc2) mutant conditionally accumulates chloroplast 1O2, making fc2 a valuable genetic system for studying chloroplast 1O2-initiated signaling. Here, we have used activation tagging in a new forward genetic screen to identify eight dominant fc2 activation-tagged (fas) mutations that suppress chloroplast 1O2-initiated PCD.ResultsWhile 1O2-triggered PCD is blocked in all fc2 fas mutants in the adult stage, such cellular degradation in the seedling stage is blocked in only two mutants. This differential blocking of PCD suggests that life-stage-specific 1O2-response pathways exist. In addition to PCD, fas mutations generally reduce 1O2-induced retrograde signals. Furthermore, fas mutants have enhanced tolerance to excess light, a natural mechanism to produce chloroplast 1O2. However, general abiotic stress tolerance was only observed in one fc2 fas mutant (fc2 fas2). Together, this suggests that plants can employ general stress tolerance mechanisms to overcome 1O2 production but that this screen was mostly specific to 1O2 signaling. We also observed that salicylic acid (SA) and jasmonate (JA) stress hormone response marker genes were induced in 1O2-stressed fc2 and generally reduced by fas mutations, suggesting that SA and JA signaling is correlated with active 1O2 signaling and PCD.DiscussionTogether, this work highlights the complexity of 1O2 signaling by demonstrating that multiple pathways may exist and introduces a suite of new 1O2 signaling mutants to investigate the mechanisms controlling chloroplast-initiated degradation, PCD, and retrograde signaling.</p

    DataSheet_1_A genetic screen for dominant chloroplast reactive oxygen species signaling mutants reveals life stage-specific singlet oxygen signaling networks.docx

    No full text
    IntroductionPlants employ intricate molecular mechanisms to respond to abiotic stresses, which often lead to the accumulation of reactive oxygen species (ROS) within organelles such as chloroplasts. Such ROS can produce stress signals that regulate cellular response mechanisms. One ROS, singlet oxygen (1O2), is predominantly produced in the chloroplast during photosynthesis and can trigger chloroplast degradation, programmed cell death (PCD), and retrograde (organelle-to-nucleus) signaling. However, little is known about the molecular mechanisms involved in these signaling pathways or how many different signaling 1O2 pathways may exist.MethodsThe Arabidopsis thaliana plastid ferrochelatase two (fc2) mutant conditionally accumulates chloroplast 1O2, making fc2 a valuable genetic system for studying chloroplast 1O2-initiated signaling. Here, we have used activation tagging in a new forward genetic screen to identify eight dominant fc2 activation-tagged (fas) mutations that suppress chloroplast 1O2-initiated PCD.ResultsWhile 1O2-triggered PCD is blocked in all fc2 fas mutants in the adult stage, such cellular degradation in the seedling stage is blocked in only two mutants. This differential blocking of PCD suggests that life-stage-specific 1O2-response pathways exist. In addition to PCD, fas mutations generally reduce 1O2-induced retrograde signals. Furthermore, fas mutants have enhanced tolerance to excess light, a natural mechanism to produce chloroplast 1O2. However, general abiotic stress tolerance was only observed in one fc2 fas mutant (fc2 fas2). Together, this suggests that plants can employ general stress tolerance mechanisms to overcome 1O2 production but that this screen was mostly specific to 1O2 signaling. We also observed that salicylic acid (SA) and jasmonate (JA) stress hormone response marker genes were induced in 1O2-stressed fc2 and generally reduced by fas mutations, suggesting that SA and JA signaling is correlated with active 1O2 signaling and PCD.DiscussionTogether, this work highlights the complexity of 1O2 signaling by demonstrating that multiple pathways may exist and introduces a suite of new 1O2 signaling mutants to investigate the mechanisms controlling chloroplast-initiated degradation, PCD, and retrograde signaling.</p
    corecore