20,811 research outputs found

    Experimental Issues for Precision Electroweak Physics at a High-Luminosity Z Factory

    Get PDF
    We discuss the ultimate precision for ALR, and therefore for the weak mixing angle, at a high-luminosity Linear Collider. Drawing on our experience at the SLC, and considering various machine parameter sets for the NLC and for TESLA, it emerges that a compromise between peak luminosity and precision will be a likely outcome. This arises due to the severe requirements on the uncertainty in the luminosity weighted collision energy (Ecm). We consider the cases with and without a polarized positron beam.Comment: Submitted to LCWS2000 (Linear Collider Workshop 20000), Fermilab, 10-24-200

    Multivariate emulation of computer simulators: model selection and diagnostics with application to a humanitarian relief model

    Get PDF
    We present a common framework for Bayesian emulation methodologies for multivariate-output simulators, or computer models, that employ either parametric linear models or nonparametric Gaussian processes. Novel diagnostics suitable for multivariate covariance-separable emulators are developed and techniques to improve the adequacy of an emulator are discussed and implemented. A variety of emulators are compared for a humanitarian relief simulator, modelling aid missions to Sicily after a volcanic eruption and earthquake, and a sensitivity analysis is conducted to determine the sensitivity of the simulator output to changes in the input variables. The results from parametric and nonparametric emulators are compared in terms of prediction accuracy, uncertainty quantification and scientific interpretability

    The needs of people with dementia living at home from user, caregiver and professional perspectives: a cross-sectional survey

    Get PDF
    Few reports have been published about differences in perspectives on perceived needs among community-residing people with dementia, their family caregivers, and professionals. The aim of this study was to compare these perspectives

    Model selection via Bayesian information capacity designs for generalised linear models

    Get PDF
    The first investigation is made of designs for screening experiments where the response variable is approximated by a generalised linear model. A Bayesian information capacity criterion is defined for the selection of designs that are robust to the form of the linear predictor. For binomial data and logistic regression, the effectiveness of these designs for screening is assessed through simulation studies using all-subsets regression and model selection via maximum penalised likelihood and a generalised information criterion. For Poisson data and log-linear regression, similar assessments are made using maximum likelihood and the Akaike information criterion for minimally-supported designs that are constructed analytically. The results show that effective screening, that is, high power with moderate type I error rate and false discovery rate, can be achieved through suitable choices for the number of design support points and experiment size. Logistic regression is shown to present a more challenging problem than log-linear regression. Some areas for future work are also indicated

    Bayesian Optimal Design for Ordinary Differential Equation Models

    Get PDF
    Bayesian optimal design is considered for experiments where it is hypothesised that the responses are described by the intractable solution to a system of non-linear ordinary differential equations (ODEs). Bayesian optimal design is based on the minimisation of an expected loss function where the expectation is with respect to all unknown quantities (responses and parameters). This expectation is typically intractable even for simple models before even considering the intractability of the ODE solution. New methodology is developed for this problem that involves minimising a smoothed stochastic approximation to the expected loss and using a state-of-the-art stochastic solution to the ODEs, by treating the ODE solution as an unknown quantity. The methodology is demonstrated on three illustrative examples and a real application involving estimating the properties of human placentas

    Physical Mechanisms for the Variable Spin-down of SGR 1900+14

    Get PDF
    We consider the physical implications of the rapid spindown of Soft Gamma Repeater 1900+14, and of the apparent "braking glitch", \Delta P/P = l x 10^-4, that was concurrent with the Aug. 27th giant flare. A radiation-hydrodynamical outflow associated with the flare could impart the required torque, but only if the dipole magnetic field is stronger than ~ 10^14 G and the outflow lasts longer and/or is more energetic than the observed X-ray flare. A positive period increment is also a natural consequence of a gradual, plastic deformation of the neutron star crust by an intense magnetic field, which forces the neutron superfluid to rotate more slowly than the crust. Sudden unpinning of the neutron vortex lines during the August 27th event would then induce a glitch opposite in sign to those observed in young pulsars, but of a much larger magnitude as a result of the slower rotation. The change in the persistent X-ray lightcurve following the August 27 event is ascribed to continued particle heating in the active region of that outburst. The enhanced X-ray output can be powered by a steady current flowing through the magnetosphere, induced by the twisting motion of the crust. The long term rate of spindown appears to be accelerated with respect to a simple magnetic dipole torque. Accelerated spindown of a seismically-active magnetar will occur when its persistent output of Alfven waves and particles exceeds its spindown luminosity. We suggest that SGRs experience some episodes of relative inactivity, with diminished spindown rates, and that such inactive magnetars are observed as Anomalous X-ray Pulsars (AXPs). The rapid reappearence of persistent X-ray emission following August 27 flare gives evidence against accretion-powered models.Comment: 24 pages, no figure

    Balmer-Dominated Shocks Exclude Hot Progenitors for Many Type Ia Supernovae

    Full text link
    The evolutionary mechanism underlying Type Ia supernova explosions remains unknown. Recent efforts to constrain progenitor models based on the influence that their high energy emission would have on the interstellar medium (ISM) of galaxies have proven successful. For individual remnants, Balmer-dominated shocks reveal the ionization state of hydrogen in the immediately surrounding gas. Here we report deep upper limits on the temperature and luminosity of the progenitors of four Type Ia remnants with associated Balmer filaments: SN 1006, 0509-67.5, 0519-69.0, and DEM L71. For SN 1006, existing observations of helium line emission in the diffuse emission ahead of the shock provide an additional constraint on the helium ionization state in the vicinity of the remnant. Using the photoionization code Cloudy, we show that these constraints exclude any hot, luminous progenitor for SN 1006, including stably hydrogen or helium nuclear-burning white dwarfs, as well as any Chandrasekhar-mass white dwarf accreting matter at 9.5×108M/\gtrsim 9.5\times10^{-8}M_{\odot}/yr via a disk. For 0509-67.5, the Balmer emission alone rules out any such white dwarf accreting 1.4×108M/\gtrsim 1.4\times10^{-8}M_{\odot}/yr. For 0519-69.0 and DEM L71, the inferred ambient ionization state of hydrogen is only weakly in tension with a recently hot, luminous progenitor, and cannot be distinguished from e.g., a relatively higher local Lyman continuum background, without additional line measurements. Future deep spectroscopic observations will resolve this ambiguity, and can either detect the influence of any luminous progenitor or rule out the same for all resolved SN Ia remnants.Comment: 9 pages, 3 figures, 1 table. Accepted for publication in Ap

    No hot and luminous progenitor for Tycho's supernova

    Full text link
    Type Ia supernovae have proven vital to our understanding of cosmology, both as standard candles and for their role in galactic chemical evolution; however, their origin remains uncertain. The canonical accretion model implies a hot and luminous progenitor which would ionize the surrounding gas out to a radius of \sim10--100 parsecs for \sim100,000 years after the explosion. Here we report stringent upper limits on the temperature and luminosity of the progenitor of Tycho's supernova (SN 1572), determined using the remnant itself as a probe of its environment. Hot, luminous progenitors that would have produced a greater hydrogen ionization fraction than that measured at the radius of the present remnant (\sim3 parsecs) can thus be excluded. This conclusively rules out steadily nuclear-burning white dwarfs (supersoft X-ray sources), as well as disk emission from a Chandrasekhar-mass white dwarf accreting 108M\gtrsim 10^{-8}M_{\odot}yr1^{-1} (recurrent novae). The lack of a surrounding Str\"omgren sphere is consistent with the merger of a double white dwarf binary, although other more exotic scenarios may be possible.Comment: 17 pages, 2 figures, including supplementary information. Original accepted manuscript (before copyediting/formatting by Nature Astronomy

    A Burst and Simultaneous Short-Term Pulsed Flux Enhancement from the Magnetar Candidate 1E 1048.1-5937

    Full text link
    We report on the 2004 June 29 burst detected from the direction of the Anomalous X-ray Pulsar (AXP) 1E 1048.1-5937 using the Rossi X-ray Timing Explorer (RXTE). We find a simultaneous increase of ~3.5 times the quiescent value in the 2-10 keV pulsed flux of 1E 1048.1-5937 during the tail of the burst which identifies the AXP as the burst's origin. The burst was overall very similar to the two others reported from the direction of this source in 2001. The unambiguous identification of 1E 1048.1-5937 as the burster here confirms it was the origin of the 2001 bursts as well. The epoch of the burst peak was very close to the arrival time of 1E 1048.1-5937's pulse peak. The burst exhibited significant spectral evolution with the trend going from hard to soft. During the 11 days following the burst, the AXP was observed further with RXTE, XMM-Newton and Chandra. Pre- and post-burst observations revealed no change in the total flux or spectrum of the quiescent emission. Comparing all three bursts detected thus far from this source we find that this event was the most fluent (>3.3x10^-8 erg/cm^2 in the 2-20 keV band), had the highest peak flux (59+/-9x10^-10 erg/s/cm^2 in the 2-20 keV band), and the longest duration (>699 s). The long duration of the burst differentiates it from Soft Gamma Repeater (SGR) bursts which have typical durations of ~0.1 s. Bursts that occur preferentially at pulse maximum, have fast-rises and long X-tails containing the majority of the total burst energy have been seen uniquely from AXPs. The marked differences between AXP and SGRs bursts may provide new clues to help understand the physical differences between these objects.Comment: 24 pages, 4 figures, submitted to the Astrophysical Journa
    corecore