312 research outputs found

    Assessment of potential risk levels associated with U.S. Environmental Protection Agency reference values.

    Get PDF
    The U.S. Environmental Protection Agency (U.S. EPA) generally uses reference doses (RfDs) or reference concentrations (RfCs) to assess risks from exposure to toxic substances for noncancer health end points. RfDs and RfCs are supposed to represent lifetime inhalation or ingestion exposure with minimal appreciable risk, but they do not include information about the estimated risk from exposures equal to the RfD/RfC. We used results from benchmark dose modeling approaches recently adopted for use in developing RfDs/RfCs to estimate the risk levels associated with exposures at the RfD/RfC. We searched the U.S. EPA Integrated Risk Information System (IRIS) database and identified 11 chemicals with oral RfDs and 12 chemicals with inhalation RfCs that used benchmark dose modeling. For assessments with sufficient model information, we found that 16 of 21 (76%) of the dose-response models were linear or supralinear. We estimated the risk from exposures at the established RfDs and RfCs for these chemicals using a linear dose-response curve to characterize risk below the observed data. Risk estimates ranged from 1 in 10,000 to 5 in 1,000 for exposures at the RfDs, and from 1 in 10,000 to 3 in 1,000 for exposures at the RfCs. Risk estimates for exposures at the RfD/RfC values derived from sublinear dose-response curves ranged from 3 in 1,000,000,000 to 8 in 10,000. Twenty-four percent of reference values corresponded to estimated risk levels greater than 1 in 1,000; 10 of 14 assessments had points of departure greater than the no-observed-adverse-effect levels. For policy development regarding management of cancer risks, the U.S. EPA often uses 1 in 1,000,000 as a de minimis risk level. Although noncancer outcomes may in some instances be reversible and considered less severe than cancer, our findings call into question the assumption that established RfD and RfC values represent negligibly small risk levels

    Use of an index to reflect the aggregate burden of long-term exposure to criteria air pollutants in the United States.

    Get PDF
    Air pollution control in the United States for five common pollutants--particulate matter, ground-level ozone, sulfur dioxide, nitrogen dioxide, and carbon monoxide--is based partly on the attainment of ambient air quality standards that represent a level of air pollution regarded as safe. Regulatory and health agencies often focus on whether standards for short periods are attained; the number of days that standards are exceeded is used to track progress. Efforts to explain air pollution to the public often incorporate an air quality index that represents daily concentrations of pollutants. While effects of short-term exposures have been emphasized, research shows that long-term exposures to lower concentrations of air pollutants can also result in adverse health effects. We developed an aggregate index that represents long-term exposure to these pollutants, using 1995 monitoring data for metropolitan areas obtained from the U.S. Environmental Protection Agency's Aerometric Information Retrieval System. We compared the ranking of metropolitan areas under the proposed aggregate index with the ranking of areas by the number of days that short-term standards were exceeded. The geographic areas with the highest burden of long-term exposures are not, in all cases, the same as those with the most days that exceeded a short-term standard. We believe that an aggregate index of long-term air pollution offers an informative addition to the principal approaches currently used to describe air pollution exposures; further work on an aggregate index representing long-term exposure to air pollutants is warranted

    Air Pollution and Childhood Respiratory Allergies in the United States

    Get PDF
    BackgroundChildhood respiratory allergies, which contribute to missed school days and other activity limitations, have increased in recent years, possibly due to environmental factors.ObjectiveIn this study we examined whether air pollutants are associated with childhood respiratory allergies in the United States.MethodsFor the approximately 70,000 children from the 1999-2005 National Health Interview Survey eligible for this study, we assigned between 40,000 and 60,000 ambient pollution monitoring data from the U.S. Environmental Protection Agency, depending on the pollutant. We used monitors within 20 miles of the child's residential block group. We used logistic regression models, fit with methods for complex surveys, to examine the associations between the reporting of respiratory allergy or hay fever and annual average exposure to particulate matter < or = 2.5 microm in diameter (PM2.5), PM < or = 10 microm in diameter, sulfur dioxide, and nitrogen dioxide and summer exposure to ozone, controlling for demographic and geographic factors.ResultsIncreased respiratory allergy/hay fever was associated with increased summer O3 levels [adjusted odds ratio (AOR) per 10 ppb = 1.20; 95% confidence interval (CI), 1.15-1.26] and increased PM2.5 (AOR per 10 microg/m3 = 1.23; 95% CI, 1.10-1.38). These associations persisted after stratification by urban-rural status, inclusion of multiple pollutants, and definition of exposures by differing exposure radii. No associations between the other pollutants and the reporting respiratory allergy/hay fever were apparent.ConclusionsThese results provide evidence of adverse health for children living in areas with chronic exposure to higher levels of O3 and PM2.5 compared with children with lower exposures

    Environmental Chemicals in Pregnant Women in the United States: NHANES 2003–2004

    Get PDF
    BackgroundExposure to chemicals during fetal development can increase the risk of adverse health effects, and while biomonitoring studies suggest pregnant women are exposed to chemicals, little is known about the extent of multiple chemicals exposures among pregnant women in the United States.ObjectiveWe analyzed biomonitoring data from the National Health and Nutritional Examination Survey (NHANES) to characterize both individual and multiple chemical exposures in U.S. pregnant women.MethodsWe analyzed data for 163 chemical analytes in 12 chemical classes for subsamples of 268 pregnant women from NHANES 2003-2004, a nationally representative sample of the U.S. population. For each chemical analyte, we calculated descriptive statistics. We calculated the number of chemicals detected within the following chemical classes: polybrominated diphenyl ethers (PBDEs), perfluorinated compounds (PFCs), organochlorine pesticides, and phthalates and across multiple chemical classes. We compared chemical analyte concentrations for pregnant and nonpregnant women using least-squares geometric means, adjusting for demographic and physiological covariates.ResultsThe percentage of pregnant women with detectable levels of an individual chemical ranged from 0 to 100%. Certain polychlorinated biphenyls, organochlorine pesticides, PFCs, phenols, PBDEs, phthalates, polycyclic aromatic hydrocarbons, and perchlorate were detected in 99-100% of pregnant women. The median number of detected chemicals by chemical class ranged from 4 of 12 PFCs to 9 of 13 phthalates. Across chemical classes, median number ranged from 8 of 17 chemical analytes to 50 of 71 chemical analytes. We found, generally, that levels in pregnant women were similar to or lower than levels in nonpregnant women; adjustment for covariates tended to increase levels in pregnant women compared with nonpregnant women.ConclusionsPregnant women in the U.S. are exposed to multiple chemicals. Further efforts are warranted to understand sources of exposure and implications for policy making

    Vaginal douching and racial/ethnic disparities in phthalates exposures among reproductive-aged women: National Health and Nutrition Examination Survey 2001–2004

    Get PDF
    Background Diethyl phthalate (DEP) and di-n-butyl phthalate (DnBP) are industrial chemicals found in consumer products that may increase risk of adverse health effects. Although use of personal care/beauty products is known to contribute to phthalate exposure, no prior study has examined feminine hygiene products as a potential phthalate source. In this study, we evaluate whether vaginal douching and other feminine hygiene products increase exposure to phthalates among US reproductive-aged women. Methods We conducted a cross-sectional study on 739 women (aged 20–49) from the National Health and Nutrition Examination Survey 2001–2004 to examine the association between self-reported use of feminine hygiene products (tampons, sanitary napkins, vaginal douches, feminine spray, feminine powder, and feminine wipes/towelettes) with urinary concentrations of monoethyl phthalate (MEP) and mono-n-butyl phthalate (MnBP), metabolites of DEP and DnBP, respectively. Results A greater proportion of black women than white and Mexican American women reported use of vaginal douches, feminine spray, feminine powder, and wipes/towelettes in the past month whereas white women were more likely than other racial/ethnic groups to report use of tampons (p \u3c 0.05). Douching in the past month was associated with higher concentrations of MEP but not MnBP. No other feminine hygiene product was significantly associated with either MEP or MnBP. We observed a dose–response relationship between douching frequency and MEP concentrations (ptrend  \u3c 0.0001); frequent users (≥2 times/month) had 152.2 % (95 % confidence intervals (CI): (68.2 %, 278.3 %)) higher MEP concentrations than non-users. We also examined whether vaginal douching mediates the relationship between race/ethnicity and phthalates exposures. Black women had 48.4 % (95 % CI: 16.8 %, 88.6 %; p = 0.0002) higher MEP levels than white women. Adjustment for douching attenuated this difference to 26.4 % (95 % CI:−0.9 %, 61.2 %; p = 0.06). Mediation effects of douching were statistically significant for black-white differences (z = 3.71, p \u3c 0.001) but not for differences between Mexican Americans and whites (z = 1.80, p = 0.07). Conclusions Vaginal douching may increase exposure to DEP and contribute to racial/ethnic disparities in DEP exposure. The presence of environmental chemicals in vaginal douches warrants further examination

    Fine Particulate Matter (PM(2.5)) Air Pollution and Selected Causes of Postneonatal Infant Mortality in California

    Get PDF
    Studies suggest that airborne particulate matter (PM) may be associated with postneonatal infant mortality, particularly with respiratory causes and sudden infant death syndrome (SIDS). To further explore this issue, we examined the relationship between long-term exposure to fine PM air pollution and postneonatal infant mortality in California. We linked monitoring data for PM ≤2.5 μm in aerodynamic diameter (PM(2.5)) to infants born in California in 1999 and 2000 using maternal addresses for mothers who lived within 5 miles of a PM(2.5) monitor. We matched each postneonatal infant death to four infants surviving to 1 year of age, by birth weight category and date of birth (within 2 weeks). For each matched set, we calculated exposure as the average PM(2.5) concentration over the period of life for the infant who died. We used conditional logistic regression to estimate the odds of postneonatal all-cause, respiratory-related, SIDS, and external-cause (a control category) mortality by exposure to PM(2.5), controlling for the matched sets and maternal demographic factors. We matched 788 postneonatal infant deaths to 3,089 infant survivors, with 51 and 120 postneonatal deaths due to respiratory causes and SIDS, respectively. We found an adjusted odds ratio for a 10−μg/m(3) increase in PM(2.5) of 1.07 [95% confidence interval (CI), 0.93–1.24] for overall postneonatal mortality, 2.13 (95% CI, 1.12–4.05) for respiratory-related postneonatal mortality, 0.82 (95% CI, 0.55–1.23) for SIDS, and 0.83 (95% CI, 0.50–1.39) for external causes. The California findings add further evidence of a PM air pollution effect on respiratory-related postneonatal infant mortality
    corecore