1,858 research outputs found

    Functional control of network dynamics using designed Laplacian spectra

    Full text link
    Complex real-world phenomena across a wide range of scales, from aviation and internet traffic to signal propagation in electronic and gene regulatory circuits, can be efficiently described through dynamic network models. In many such systems, the spectrum of the underlying graph Laplacian plays a key role in controlling the matter or information flow. Spectral graph theory has traditionally prioritized unweighted networks. Here, we introduce a complementary framework, providing a mathematically rigorous weighted graph construction that exactly realizes any desired spectrum. We illustrate the broad applicability of this approach by showing how designer spectra can be used to control the dynamics of various archetypal physical systems. Specifically, we demonstrate that a strategically placed gap induces chimera states in Kuramoto-type oscillator networks, completely suppresses pattern formation in a generic Swift-Hohenberg model, and leads to persistent localization in a discrete Gross-Pitaevskii quantum network. Our approach can be generalized to design continuous band gaps through periodic extensions of finite networks.Comment: 9 pages, 5 figure

    Reversible signal transmission in an active mechanical metamaterial

    Full text link
    Mechanical metamaterials are designed to enable unique functionalities, but are typically limited by an initial energy state and require an independent energy input to function repeatedly. Our study introduces a theoretical active mechanical metamaterial that incorporates a biological reaction mechanism to overcome this key limitation of passive metamaterials. Our material allows for reversible mechanical signal transmission, where energy is reintroduced by the biologically motivated reaction mechanism. By analysing a coarse grained continuous analogue of the discrete model, we find that signals can be propagated through the material by a travelling wave. Analysis of the continuum model provides the region of the parameter space that allows signal transmission, and reveals similarities with the well-known FitzHugh-Nagumo system. We also find explicit formulae that approximate the effect of the timescale of the reaction mechanism on the signal transmission speed, which is essential for controlling the material.Comment: 20 pages, 7 figure

    The geometry of dual isomonodromic deformations

    Full text link
    The JMMS equations are studied using the geometry of the spectral curve of a pair of dual systems. It is shown that the equations can be represented as time-independent Hamiltonian flows on a Jacobian bundle

    A canonical transformation and the tunneling probability for the birth of an asymptotically DeSitter universe with dust

    Full text link
    In the present work, we study the quantum cosmology description of closed Friedmann-Robertson-Walker models in the presence of a positive cosmological constant and a generic perfect fluid. We work in the Schutz's variational formalism. If one uses the scale factor and its canonically conjugated momentum as the phase space variables that describe the geometrical sector of these models, one obtains Wheeler-DeWitt equations with operator ordering ambiguities. In order to avoid those ambiguities and simplify the quantum treatment of the models, we introduce new phase space variables. We explicitly demonstrate that the transformation leading from the old set of variables to the new one is canonical. In order to show that the above canonical transformations simplify the quantum treatment of those models, we consider a particular model where the perfect fluid is dust. We solve the Wheeler-DeWitt equation numerically using the Crank-Nicholson scheme and determine the time evolution of the initial wave function. Finally, we compare the results for the present model with the ones for another model where the only difference is the presence of a radiative perfect fluid, instead of dust.Comment: Revtex4, 18 pages, 2 EPS figure

    The Landau electron problem on a cylinder

    Full text link
    We consider the quantum mechanics of an electron confined to move on an infinite cylinder in the presence of a uniform radial magnetic field. This problem is in certain ways very similar to the corresponding problem on the infinite plane. Unlike the plane however, the group of symmetries of the magnetic field, namely, rotations about the axis and the axial translations, is {\em not} realized by the quantum electron but only a subgroup comprising rotations and discrete translations along the axial direction, is. The basic step size of discrete translations is such that the flux through the `unit cylinder cell' is quantized in units of the flux quantum. The result is derived in two different ways: using the condition of projective realization of symmetry groups and using the more familiar approach of determining the symmetries of a given Hamiltonian.Comment: 26 pages, revtex file, no figures. In version 2, introduction is expanded to explain our approach and references are updated. Results and conclusions are unchange
    • …
    corecore