1,397 research outputs found

    Quantization Of Cyclotron Motion and Quantum Hall Effect

    Full text link
    We present a two dimensional model of IQHE in accord with the cyclotron motion. The quantum equation of the QHE curve and a new definition of filling factor are also given.Comment: 13 Pages, Latex, 1 figure, to appear in Europhys. Lett. September 199

    Effective Equations of Motion for Quantum Systems

    Full text link
    In many situations, one can approximate the behavior of a quantum system, i.e. a wave function subject to a partial differential equation, by effective classical equations which are ordinary differential equations. A general method and geometrical picture is developed and shown to agree with effective action results, commonly derived through path integration, for perturbations around a harmonic oscillator ground state. The same methods are used to describe dynamical coherent states, which in turn provide means to compute quantum corrections to the symplectic structure of an effective system.Comment: 31 pages; v2: a new example, new reference

    Noncentral extensions as anomalies in classical dynamical systems

    Get PDF
    A two cocycle is associated to any action of a Lie group on a symplectic manifold. This allows to enlarge the concept of anomaly in classical dynamical systems considered by F. Toppan [in J. Nonlinear Math. Phys. 8, no.3 (2001) 518-533] so as to encompass some extensions of Lie algebras related to noncanonical actions.Comment: arxiv version is already officia

    The existence of time

    Full text link
    Of those gauge theories of gravity known to be equivalent to general relativity, only the biconformal gauging introduces new structures - the quotient of the conformal group of any pseudo-Euclidean space by its Weyl subgroup always has natural symplectic and metric structures. Using this metric and symplectic form, we show that there exist canonically conjugate, orthogonal, metric submanifolds if and only if the original gauged space is Euclidean or signature 0. In the Euclidean cases, the resultant configuration space must be Lorentzian. Therefore, in this context, time may be viewed as a derived property of general relativity.Comment: 21 pages (Reduced to clarify and focus on central argument; some calculations condensed; typos corrected

    Abelian BF theory and Turaev-Viro invariant

    Full text link
    The U(1) BF Quantum Field Theory is revisited in the light of Deligne-Beilinson Cohomology. We show how the U(1) Chern-Simons partition function is related to the BF one and how the latter on its turn coincides with an abelian Turaev-Viro invariant. Significant differences compared to the non-abelian case are highlighted.Comment: 47 pages and 6 figure

    Geometrical aspects of integrable systems

    Full text link
    We review some basic theorems on integrability of Hamiltonian systems, namely the Liouville-Arnold theorem on complete integrability, the Nekhoroshev theorem on partial integrability and the Mishchenko-Fomenko theorem on noncommutative integrability, and for each of them we give a version suitable for the noncompact case. We give a possible global version of the previous local results, under certain topological hypotheses on the base space. It turns out that locally affine structures arise naturally in this setting.Comment: It will appear on International Journal of Geometric Methods in Modern Physics vol.5 n.3 (May 2008) issu

    Symplectic quantization, inequivalent quantum theories, and Heisenberg's principle of uncertainty

    Full text link
    We analyze the quantum dynamics of the non-relativistic two-dimensional isotropic harmonic oscillator in Heisenberg's picture. Such a system is taken as toy model to analyze some of the various quantum theories that can be built from the application of Dirac's quantization rule to the various symplectic structures recently reported for this classical system. It is pointed out that that these quantum theories are inequivalent in the sense that the mean values for the operators (observables) associated with the same physical classical observable do not agree with each other. The inequivalence does not arise from ambiguities in the ordering of operators but from the fact of having several symplectic structures defined with respect to the same set of coordinates. It is also shown that the uncertainty relations between the fundamental observables depend on the particular quantum theory chosen. It is important to emphasize that these (somehow paradoxical) results emerge from the combination of two paradigms: Dirac's quantization rule and the usual Copenhagen interpretation of quantum mechanics.Comment: 8 pages, LaTex file, no figures. Accepted for publication in Phys. Rev.

    Effects of off great-circle propagation on the phase of long-period surface waves

    Full text link
    Surface wave phase corrections for departures from great-circle propagation are computed using two-point ray-tracing through the aspherical earth model M84C of Woodhouse & Dziewonski (1984). For Rayleigh and Love waves with periods in the range 100–250 s, we determine whether these corrections provide significant variance reductions in source determinations compared with corrections calculated assuming great-circle propagation through the heterogeneous structure. For most source-receiver geometries, the off great-circle travel-time effects are small (< 10 s) for second and third orbits (e.g. R2 and R3), and their application in source determinations does not significantly reduce the data variance. This suggests that for the loworder heterogeneous models currently available the geometrical optics approximation is valid for long-period low orbit surface waves. Off great-circle phase anomalies increase quasi-linearly with increasing orbit number, indicating that the geometrical optics approximation degrades for higher orbits, which emphasizes the importance of developing higher order approximations for free-oscillation studies.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73147/1/j.1365-246X.1987.tb05217.x.pd

    A Comparative Study of Laplacians and Schroedinger-Lichnerowicz-Weitzenboeck Identities in Riemannian and Antisymplectic Geometry

    Full text link
    We introduce an antisymplectic Dirac operator and antisymplectic gamma matrices. We explore similarities between, on one hand, the Schroedinger-Lichnerowicz formula for spinor bundles in Riemannian spin geometry, which contains a zeroth-order term proportional to the Levi-Civita scalar curvature, and, on the other hand, the nilpotent, Grassmann-odd, second-order \Delta operator in antisymplectic geometry, which in general has a zeroth-order term proportional to the odd scalar curvature of an arbitrary antisymplectic and torsionfree connection that is compatible with the measure density. Finally, we discuss the close relationship with the two-loop scalar curvature term in the quantum Hamiltonian for a particle in a curved Riemannian space.Comment: 55 pages, LaTeX. v2: Subsection 3.10 expanded. v3: Reference added. v4: Published versio
    • …
    corecore