354 research outputs found

    FUSE Observations of Intrinsic Absorption in the Seyfert 1 Galaxy Mrk 509

    Get PDF
    We present far-ultraviolet spectra of the Seyfert 1 galaxy Mrk 509 obtained in 1999 November with the Far Ultraviolet Spectroscopic Explorer (FUSE). Our data span the observed wavelength range 915-1185 A at a resolution of ~20 km/s. The spectrum shows a blue continuum, broad OVI 1032,1038 emission, and a broad CIII 977 emission line. Superposed on these emission components, we resolve associated absorption lines of OVI 1032,1038, CIII 977, and Lyman lines through Lzeta. Seven distinct kinematic components are present, spanning a velocity range of -440 to +170 km/s relative to the systemic velocity. The absorption is clustered in two groups, one centered at -370m km/s and another at the systemic velocity. The blue-shifted cluster may be associated with the extended line emission visible in deep images of Mrk 509 obtained by Phillips et al. Although several components appear to be saturated, they are not black at their centers. Partial covering or scattering permits ~7% of the broad-line or continuum flux to be unaffected by absorption. Of the multiple components, only one has the same ionization state and column density as highly ionized gas that produces the OVII and OVIII ionization edges in X-ray spectra of Mrk 509. This paper will appear in a special issue of Astrophysical Journal Letters devoted to the first scientific results from the FUSE mission.Comment: To appear in the Astrophysical Journal (Letters). 4 pages, 3 color PostScript figures. Figures are best viewed and printed in color. Added acknowledgment that this is one of many papers to be published in a special issue of ApJL devoted to the first scientific results from the FUSE missio

    Intercomparison of Surface Albedo Retrievals from MISR, MODIS, CGLS Using Tower and Upscaled Tower Measurements

    Get PDF
    Surface albedo is of crucial interest in land–climate interaction studies, since it is a key parameter that affects the Earth’s radiation budget. The temporal and spatial variation of surface albedo can be retrieved from conventional satellite observations after a series of processes, including atmospheric correction to surface spectral bi-directional reflectance factor (BRF), bi-directional reflectance distribution function (BRDF) modelling using these BRFs, and, where required, narrow-to-broadband albedo conversions. This processing chain introduces errors that can be accumulated and then affect the accuracy of the retrieved albedo products. In this study, the albedo products derived from the multi-angle imaging spectroradiometer (MISR), moderate resolution imaging spectroradiometer (MODIS) and the Copernicus Global Land Service (CGLS), based on the VEGETATION and now the PROBA-V sensors, are compared with albedometer and upscaled in situ measurements from 19 tower sites from the FLUXNET network, surface radiation budget network (SURFRAD) and Baseline Surface Radiation Network (BSRN) networks. The MISR sensor onboard the Terra satellite has 9 cameras at different view angles, which allows a near-simultaneous retrieval of surface albedo. Using a 16-day retrieval algorithm, the MODIS generates the daily albedo products (MCD43A) at a 500-m resolution. The CGLS albedo products are derived from the VEGETATION and PROBA-V, and updated every 10 days using a weighted 30-day window. We describe a newly developed method to derive the two types of albedo, which are directional hemispherical reflectance (DHR) and bi-hemispherical reflectance (BHR), directly from three tower-measured variables of shortwave radiation: downwelling, upwelling and diffuse shortwave radiation. In the validation process, the MISR, MODIS and CGLS-derived albedos (DHR and BHR) are first compared with tower measured albedos, using pixel-to-point analysis, between 2012 to 2016. The tower measured point albedos are then upscaled to coarse-resolution albedos, based on atmospherically corrected BRFs from high-resolution Earth observation (HR-EO) data, alongside MODIS BRDF climatology from a larger area. Then a pixel-to-pixel comparison is performed between DHR and BHR retrieved from coarse-resolution satellite observations and DHR and BHR upscaled from accurate tower measurements. The experimental results are presented on exploring the parameter space associated with land cover type, heterogeneous vs. homogeneous and instantaneous vs. time composite retrievals of surface albedo

    Limits on the Optical Brightness of the Epsilon Eridani Dust Ring

    Full text link
    The STIS/CCD camera on the {\em Hubble Space Telescope (HST)} was used to take deep optical images near the K2V main-sequence star ϵ\epsilon Eridani in an attempt to find an optical counterpart of the dust ring previously imaged by sub-mm observations. Upper limits for the optical brightness of the dust ring are determined and discussed in the context of the scattered starlight expected from plausible dust models. We find that, even if the dust is smoothly distributed in symmetrical rings, the optical surface brightness of the dust, as measured with the {\em HST}/STIS CCD clear aperture at 55 AU from the star, cannot be brighter than about 25 STMAG/"2^2. This upper limit excludes some solid grain models for the dust ring that can fit the IR and sub-mm data. Magnitudes and positions for \approx 59 discrete objects between 12.5" to 58" from ϵ\epsilon Eri are reported. Most if not all of these objects are likely to be background stars and galaxies.Comment: Revision corrects author lis

    Evidence of a Supermassive Black Hole in the Galaxy NGC 1023 from the Nuclear Stellar Dynamics

    Get PDF
    We analyze the nuclear stellar dynamics of the SB0 galaxy NGC 1023, utilizing observational data both from the Space Telescope Imaging Spectrograph aboard the Hubble Space Telescope and from the ground. The stellar kinematics measured from these long-slit spectra show rapid rotation (V = 70 km/s at a distance of 0.1 arcsec = 4.9 pc from the nucleus) and increasing velocity dispersion toward the nucleus (where sigma = 295 +/- 30 km/s). We model the observed stellar kinematics assuming an axisymmetric mass distribution with both two and three integrals of motion. Both modeling techniques point to the presence of a central dark compact mass (which presumably is a supermassive black hole) with confidence > 99%. The isotropic two-integral models yield a best-fitting black hole mass of (6.0 +/- 1.4) x 10^7 M_sun and mass-to-light ratio (M/L_V) of 5.38 +/- 0.08, and the goodness-of-fit (chi^2) is insensitive to reasonable values for the galaxy's inclination. The three-integral models, which non-parametrically fit the observed line-of-sight velocity distribution as a function of position in the galaxy, suggest a black hole mass of (3.9 +/- 0.4) x 10^7 M_sun and M/L_V of 5.56 +/- 0.02 (internal errors), and the edge-on models are vastly superior fits over models at other inclinations. The internal dynamics in NGC 1023 as suggested by our best-fit three-integral model shows that the velocity distribution function at the nucleus is tangentially anisotropic, suggesting the presence of a nuclear stellar disk. The nuclear line of sight velocity distribution has enhanced wings at velocities >= 600 km/s from systemic, suggesting that perhaps we have detected a group of stars very close to the central dark mass.Comment: 21 pages, 12 figures, accepted in the Astrophysical Journa

    The Heavy Element Enrichment of Lyman alpha Clouds in the Virgo Supercluster

    Full text link
    Using high S/N STIS echelle spectra (FWHM=7 km/s) of 3C 273, we constrain the metallicities of two Lya clouds in the vicinity of the Virgo cluster. We detect C II, Si II, and Si III absorption lines in the Lya absorber at z = 0.00530. Previous observations with FUSE have revealed Ly beta - Ly theta lines at this redshift, thereby accurately constraining N(H I). We model the ionization of the gas and derive [C/H] = -1.2^{+0.3}_{-0.2}, [Si/C] = 0.2+/-0.1, and log n_{H} = -2.8+/-0.3. The model implies a small absorber thickness, ~70 pc, and thermal pressure p/k ~ 40 cm^{-3} K. It is most likely that the absorber is pressure confined by an external medium because gravitational confinement would require a very high ratio of dark matter to baryonic matter. Based on Milky Way sight lines in which carbon and silicon abundances have been reliably measured in the same interstellar cloud (including new measurements presented herein), we argue that the overabundance of Si relative to C is not due to dust depletion. Instead, this probably indicates that the gas has been predominately enriched by Type II supernovae. Such enrichment is most plausibly provided by an unbound galactic wind, given the absence of galaxies within a projected distance of 100 kpc and the presence of galaxies capable of driving a wind at larger distances. We also constrain the metallicity and physical conditions of the Virgo absorber at z = 0.00337 based on detections of O VI and H I and an upper limit on C IV. If this absorber is collisionally ionized, the O VI/C IV limit requires T > 10^{5.3} K. For either collisional ionization or photoionization, we find that [O/H] > -2.0 at z = 0.00337.Comment: Final Ap.J. versio

    Overview of the Far Ultraviolet Spectroscopic Explorer Mission

    Get PDF
    The Far Ultraviolet Spectroscopic Explorer satellite observes light in the far-ultraviolet spectral region, 905 - 1187 A with high spectral resolution. The instrument consists of four coaligned prime-focus telescopes and Rowland spectrographs with microchannel plate detectors. Two of the telescope channels use Al:LiF coatings for optimum reflectivity from approximately 1000 to 1187 A and the other two use SiC coatings for optimized throughput between 905 and 1105 A. The gratings are holographically ruled to largely correct for astigmatism and to minimize scattered light. The microchannel plate detectors have KBr photocathodes and use photon counting to achieve good quantum efficiency with low background signal. The sensitivity is sufficient to examine reddened lines of sight within the Milky Way as well as active galactic nuclei and QSOs for absorption line studies of both Milky Way and extra-galactic gas clouds. This spectral region contains a number of key scientific diagnostics, including O VI, H I, D I and the strong electronic transitions of H2 and HD.Comment: To appear in FUSE special issue of the Astrophysical Journal Letters. 6 pages + 4 figure

    Telescope to Observe Planetary Systems (TOPS): a high throughput 1.2-m visible telescope with a small inner working angle

    Get PDF
    The Telescope to Observe Planetary Systems (TOPS) is a proposed space mission to image in the visible (0.4-0.9 micron) planetary systems of nearby stars simultaneously in 16 spectral bands (resolution R~20). For the ~10 most favorable stars, it will have the sensitivity to discover 2 R_E rocky planets within habitable zones and characterize their surfaces or atmospheres through spectrophotometry. Many more massive planets and debris discs will be imaged and characterized for the first time. With a 1.2m visible telescope, the proposed mission achieves its power by exploiting the most efficient and robust coronagraphic and wavefront control techniques. The Phase-Induced Amplitude Apodization (PIAA) coronagraph used by TOPS allows planet detection at 2 lambda/d with nearly 100% throughput and preserves the telescope angular resolution. An efficient focal plane wavefront sensing scheme accurately measures wavefront aberrations which are fed back to the telescope active primary mirror. Fine wavefront control is also performed independently in each of 4 spectral channels, resulting in a system that is robust to wavefront chromaticity.Comment: 12 pages, SPIE conference proceeding, May 2006, Orlando, Florid
    corecore