24 research outputs found

    CDX2 mutations do not account for juvenile polyposis or Peutz–Jeghers syndrome and occur infrequently in sporadic colorectal cancers

    Get PDF
    Peutz–Jeghers syndrome (PJS) and juvenile polyposis (JPS) are both characterized by the presence of hamartomatous polyps and increased risk of malignancy in the gastrointestinal tract. Mutations of the LKB1 and SMAD4 genes have been shown recently to cause a number of PJS and JPS cases respectively, but there remains considerable uncharacterized genetic heterogeneity in these syndromes, particularly JPS. The mouse homologue of CDX2 has been shown to give rise to a phenotype which includes hamartomatous-like polyps in the colon and is therefore a good candidate for JPS and PJS cases which are not accounted for by the SMAD4 and LKB1 genes. By analogy with SMAD4CDX2 is also a candidate for somatic mutation in sporadic colorectal cancer. We have screened 37 JPS families/cases without known SMAD4 mutations, 10 Peutz-Jeghers cases without known LKB1 mutations and 49 sporadic colorectal cancers for mutations in CDX2. Although polymorphic variants and rare variants of unlikely significance were detected, no pathogenic CDX2 mutations were found in any case of JPS or PJS, or in any of the sporadic cancers. © 2001 Cancer Research Campaign www.bjcancer.co

    Investigation of pathogenic mechanisms in multiple colorectal adenoma patients without germline APC or MYH/MUTYH mutations

    Get PDF
    Patients with multiple (5–100) colorectal adenomas (MCRAs) often have no germline mutation in known predisposition genes, but probably have a genetic origin. We collected a set of 25 MCRA patients with no detectable germline mutation in APC, MYH/MUTYH or the mismatch repair genes. Extracolonic tumours were absent in these cases. No vertical transmission of the MCRA phenotype was found. Based on the precedent of MYH-associated polyposis (MAP), we searched for a mutational signature in 241 adenomatous polyps from our MCRA cases. Somatic mutation frequencies and spectra at APC, K-ras and BRAF were, however, similar to those in sporadic colorectal adenomas. Our data suggest that the genetic pathway of tumorigenesis in the MCRA patients' tumours is very similar to the classical pathway in sporadic adenomas. In sharp contrast to MAP tumours, we did not find evidence of a specific mutational signature in any individual patient or in the overall set of MCRA cases. These results suggest that hypermutation of APC does not cause our patients' disease and strongly suggests that MAP is not a paradigm for the remaining MCRA patients. Our MCRA patients' colons showed no evidence of microadenomas, unlike in MAP and familial adenomatous polyposis (FAP). However, nuclear β-catenin expression was significantly greater in MCRA patients' tumours than in sporadic adenomas. We suggest that, at least in some cases, the MCRA phenotype results from germline variation that acts subsequent to tumour initiation, perhaps by causing more rapid or more likely progression from microadenoma to macroadenoma

    CpG island methylation is a common finding in colorectal cancer cell lines

    Get PDF
    Tumour cell lines are commonly used in colorectal cancer (CRC) research, including studies designed to assess methylation defects. Although many of the known genetic aberrations in CRC cell lines have been comprehensively described, no studies have been performed on their methylation status. In this study, 30 commonly used CRC cell lines as well as seven primary tumours from individuals with hereditary nonpolyposis colorectal cancer (HNPCC) were assessed for methylation at six CpG islands known to be hypermethylated in colorectal cancer: hMLH1, p16, methylated in tumour (MINT-)-1, -2, -12 and -31. The cell lines were also assessed for microsatellite instability (MSI), ploidy status, hMLH1 expression, and mutations in APC and Ki-ras. Methylation was frequently observed at all examined loci in most cell lines, and no differences were observed between germline-derived and sporadic cell lines. Methylation was found at MINT 1 in 63%, MINT 2 in 57%, MINT 12 in 71%, MINT 31 in 53%, p16 in 71%, and hMLH1 in 30% of cell lines. Overall only one cell line, SW1417, did not show methylation at any locus. Methylation was found with equal frequency in MSI and chromosomally unstable lines. MSI was over-represented in the cell lines relative to sporadic CRC, being detected in 47% of cell lines. The rate of codon 13 Ki-ras mutations was also over three times that expected from in vivo studies. We conclude that CpG island hypermethylation, whether acquired in vivo or in culture, is a ubiquitous phenomenon in CRC cell lines. We suggest that CRC cell lines may be only representative of a small subset of real tumours, and this should be taken into account in the use of CRC cell lines for epigenetic studies

    SMAD4 - Molecular gladiator of the TGF-β signaling is trampled upon by mutational insufficiency in colorectal carcinoma of Kashmiri population: an analysis with relation to KRAS proto-oncogene

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The development and progression of colorectal cancer has been extensively studied and the genes responsible have been well characterized. However the correlation between the <it>SMAD4 </it>gene mutations with <it>KRAS </it>mutant status has not been explored by many studies so far. Here, in this study we aimed to investigate the role of <it>SMAD4 </it>gene aberrations in the pathogenesis of CRC in Kashmir valley and to correlate it with various clinicopathological variables and <it>KRAS </it>mutant genotype.</p> <p>Methods</p> <p>We examined the paired tumor and normal tissue specimens of 86 CRC patients for the occurrence of aberrations in MCR region of <it>SMAD4 </it>and exon 1 of <it>KRAS </it>by PCR-SSCP and/or PCR-Direct sequencing.</p> <p>Results</p> <p>The overall mutation rate of mutation cluster region (MCR) region of <it>SMAD4 </it>gene among 86 patients was 18.6% (16 of 86). 68.75% (11/16) of the <it>SMAD4 </it>gene mutants were found to have mutations in <it>KRAS </it>gene as well. The association between the <it>KRAS </it>mutant genotype with <it>SMAD4 </it>mutants was found to be significant (P =< 0.05). Further more, we found a significant association of tumor location, tumor grade, node status, occupational exposure to pesticides and bleeding PR/Constipation with the mutation status of the <it>SMAD4 </it>gene (P =< 0.05).</p> <p>Conclusion</p> <p>Our study suggests that <it>SMAD4 </it>gene aberrations are the common event in CRC development but play a differential role in the progression of CRC in higher tumor grade (C+D) and its association with the <it>KRAS </it>mutant status suggest that these two molecules together are responsible for the progression of the tumor to higher/advanced stage.</p

    Topoisomerase IIα Binding Domains of Adenomatous Polyposis Coli Influence Cell Cycle Progression and Aneuploidy

    Get PDF
    Truncating mutations in the tumor suppressor gene APC (Adenomatous Polyposis Coli) are thought to initiate the majority of colorectal cancers. The 15- and 20-amino acid repeat regions of APC bind beta-catenin and have been widely studied for their role in the negative regulation of canonical Wnt signaling. However, functions of APC in other important cellular processes, such as cell cycle control or aneuploidy, are only beginning to be studied. Our previous investigation implicated the 15-amino acid repeat region of APC (M2-APC) in the regulation of the G2/M cell cycle transition through interaction with topoisomerase IIalpha (topo IIalpha).We now demonstrate that the 20-amino acid repeat region of APC (M3-APC) also interacts with topo IIalpha in colonic epithelial cells. Expression of M3-APC in cells with full-length endogenous APC causes cell accumulation in G2. However, cells with a mutated topo IIalpha isoform and lacking topo IIbeta did not arrest, suggesting that the cellular consequence of M2- or M3-APC expression depends on functional topoisomerase II. Both purified recombinant M2- and M3-APC significantly enhanced the activity of topo IIalpha. Of note, although M3-APC can bind beta-catenin, the G2 arrest did not correlate with beta-catenin expression or activity, similar to what was seen with M2-APC. More importantly, expression of either M2- or M3-APC also led to increased aneuploidy in cells with full-length endogenous APC but not in cells with truncated endogenous APC that includes the M2-APC region.Together, our data establish that the 20-amino acid repeat region of APC interacts with topo IIalpha to enhance its activity in vitro, and leads to G2 cell cycle accumulation and aneuploidy when expressed in cells containing full-length APC. These findings provide an additional explanation for the aneuploidy associated with many colon cancers that possess truncated APC

    Identification of germline alterations of the mad homology 2 domain of SMAD3 and SMAD4 from the Ontario site of the breast cancer family registry (CFR)

    Get PDF
    Abstract Introduction A common feature of neoplastic cells is that mutations in SMADs can contribute to the loss of sensitivity to the anti-tumor effects of transforming growth factor-β (TGF-β). However, germline mutation analysis of SMAD3 and SMAD4, the principle substrates of the TGF-β signaling pathway, has not yet been conducted in breast cancer. Thus, it is currently unknown whether germline SMAD3 and SMAD4 mutations are involved in breast cancer predisposition. Methods We performed mutation analysis of the highly conserved mad-homology 2 (MH2) domains for both genes in genomic DNA from 408 non-BRCA1/BRCA2 breast cancer cases and 710 population controls recruited by the Ontario site of the breast cancer family registry (CFR) using denaturing high-performance liquid chromatography (DHPLC) and direct DNA sequencing. The results were interpreted in several ways. First, we adapted nucleotide diversity analysis to quantitatively assess whether the frequency of alterations differ between the two genes. Next, in silico tools were used to predict variants' effect on domain function and mRNA splicing. Finally, 37 cases or controls harboring alterations were tested for aberrant splicing using reverse-transcription polymerase chain reaction (PCR) and real-time PCR statistical comparison of germline expressions by non-parametric Mann-Whitney test of independent samples. Results We identified 27 variants including 2 novel SMAD4 coding variants c.1350G > A (p.Gln450Gln), and c.1701A > G (p.Ile525Val). There were no inactivating mutations even though c.1350G > A was predicted to affect exonic splicing enhancers. However, several additional findings were of note: 1) nucleotide diversity estimate for SMAD3 but not SMAD4 indicated that coding variants of the MH2 domain were more infrequent than expected; 2) in breast cancer cases SMAD3 was significantly over-expressed relative to controls (P A was associated with elevated germline expression (> 5-fold); 3) separate analysis using tissue expression data showed statistically significant over-expression of SMAD3 and SMAD4 in breast carcinomas. Conclusions This study shows that inactivating germline alterations in SMAD3 and SMAD4 are rare, suggesting a limited role in driving tumorigenesis. Nevertheless, aberrant germline expressions of SMAD3 and SMAD4 may be more common in breast cancer than previously suspected and offer novel insight into their roles in predisposition and/or progression of breast cancer

    CDX2 mutations do not account for juvenile polyposis or Peutz-Jeghers syndrome and occur infrequently in sporadic colorectal cancers.

    No full text
    Peutz-Jeghers syndrome (PJS) and juvenile polyposis (JPS) are both characterized by the presence of hamartomatous polyps and increased risk of malignancy in the gastrointestinal tract. Mutations of the LKB1 and SMAD4 genes have been shown recently to cause a number of PJS and JPS cases respectively, but there remains considerable uncharacterized genetic heterogeneity in these syndromes, particularly JPS. The mouse homologue of CDX2 has been shown to give rise to a phenotype which includes hamartomatous-like polyps in the colon and is therefore a good candidate for JPS and PJS cases which are not accounted for by the SMAD4 and LKB1 genes. By analogy with SMAD4, CDX2 is also a candidate for somatic mutation in sporadic colorectal cancer. We have screened 37 JPS families/cases without known SMAD4 mutations, 10 Peutz-Jeghers cases without known LKB1 mutations and 49 sporadic colorectal cancers for mutations in CDX2. Although polymorphic variants and rare variants of unlikely significance were detected, no pathogenic CDX2 mutations were found in any case of JPS or PJS, or in any of the sporadic cancers

    A family with juvenile polyposis linked to the BMPR1A locus: cryptic mutation or closely linked gene?

    No full text
    BACKGROUND AND AIM: Familial juvenile polyposis syndrome (JPS) is a rare autosomal dominant condition in which patients develop hamartomatous gastrointestinal polyps with malignant potential. Pathogenic germline mutations in both the SMAD4 and BMPR1A genes involved in the transforming growth factor beta pathway account for 40% of cases of JPS. Genetic heterogeneity remains evident, as the balance of cases is not accounted for by mutations in these genes. The aim of this study was to determine the mutation responsible in a family with juvenile polyposis. METHODS: An Australian Caucasian family with juvenile polyposis have attended and followed surveillance plans through the Familial Bowel Cancer Clinic, The Royal Melbourne Hospital. A pedigree of the family was constructed with attention to the mixed phenotypic expression of polyps in affected members. Genetic testing for SMAD4 and BMPR1A mutations in germline DNA and linkage analysis to SMAD4, BMPR1A and 15q14 (CRAC1 locus) were performed. RESULTS: There were no pathogenic mutations in SMAD4 and BMPR1A. There was no linkage to SMAD4 or 15q14 (CRAC1 locus). Linkage analysis suggested a cryptic BMPR1A mutation or the presence of another gene in close proximity to the BMPR1A locus. Two additional candidate genes in the region of linkage (PTEN and MINPP1) were excluded. CONCLUSION: Most affected members of this Australian Caucasian family demonstrate a phenotype of mixed polyps: juvenile polyps, adenomas and/or hyperplastic polyps. Cloning of a potentially responsible gene closely linked to the BMPR1A locus or a cryptic mutation in BMPR1A may offer valuable insights into the pathogenesis of JPS
    corecore