47 research outputs found

    Developments in the field of clinical allergy in 2018 through the eyes of Clinical and Experimental Allergy, Part II

    Full text link
    In this article, we describe developments in the field of clinical allergy as described by Clinical and Experimental Allergy in 2018; epidemiology, asthma and rhinitis, clinical allergy and allergens are all covered.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/153257/1/cea13535.pd

    Galactose-α-1,3-Galactose–Specific IgE Is Associated with Anaphylaxis but Not Asthma

    Get PDF
    Rationale: IgE antibodies to the mammalian oligosaccharide galactose-α-1,3-galactose (α-gal) are common in the southeastern United States. These antibodies, which are induced by ectoparasitic ticks, can give rise to positive skin tests or serum assays with cat extract

    Expansion of CD4+CD25+ and CD25- T-Bet, GATA-3, Foxp3 and RORÎłt Cells in Allergic Inflammation, Local Lung Distribution and Chemokine Gene Expression

    Get PDF
    Allergic asthma is associated with airway eosinophilia, which is regulated by different T-effector cells. T cells express transcription factors T-bet, GATA-3, RORÎłt and Foxp3, representing Th1, Th2, Th17 and Treg cells respectively. No study has directly determined the relative presence of each of these T cell subsets concomitantly in a model of allergic airway inflammation. In this study we determined the degree of expansion of these T cell subsets, in the lungs of allergen challenged mice. Cell proliferation was determined by incorporation of 5-bromo-2â€Č-deoxyuridine (BrdU) together with 7-aminoactnomycin (7-AAD). The immunohistochemical localisation of T cells in the lung microenvironments was also quantified. Local expression of cytokines, chemokines and receptor genes was measured using real-time RT-PCR array analysis in tissue sections isolated by laser microdissection and pressure catapulting technology. Allergen exposure increased the numbers of T-bet+, GATA-3+, RORÎłt+ and Foxp3+ cells in CD4+CD25+ and CD4+CD25- T cells, with the greatest expansion of GATA-3+ cells. The majority of CD4+CD25+ T-bet+, GATA-3+, RORÎłt+ and Foxp3+ cells had incorporated BrdU and underwent proliferation during allergen exposure. Allergen exposure led to the accumulation of T-bet+, GATA-3+ and Foxp3+ cells in peribronchial and alveolar tissue, GATA-3+ and Foxp3+ cells in perivascular tissue, and RORÎłt+ cells in alveolar tissue. A total of 28 cytokines, chemokines and receptor genes were altered more than 3 fold upon allergen exposure, with expression of half of the genes claimed in all three microenvironments. Our study shows that allergen exposure affects all T effector cells in lung, with a dominant of Th2 cells, but with different local cell distribution, probably due to a distinguished local inflammatory milieu

    Developments allergy in 2019 through the eyes of Clinical and Experimental Allergy, Part II clinical allergy

    No full text
    In the second of two linked articles, we describe the development in clinical as described by Clinical &amp; Experimental Allergy and other journals in 2019. Epidemiology, clinical allergy, asthma and rhinitis are all covered. In this article, we described the development in the field of allergy as described by Clinical and Experimental Allergy in 2019. Epidemiology, clinical allergy, asthma and rhinitis are all covered.</p

    Developments allergy in 2019 through the eyes of clinical and experimental allergy, part I mechanisms

    No full text
    In the first of two linked articles, we describe the development in the mechanisms underlying allergy as described by Clinical &amp; Experimental Allergy and other journals in 2019. Experimental models of allergic disease, basic mechanisms, clinical mechanisms and allergens are all covered.</p
    corecore