6,094 research outputs found

    The thermal expansivity of ice II

    Get PDF

    Neutron diffraction studies of planetary ices

    Get PDF

    Fast physical models for Si LDMOS power transistor characterization

    Get PDF
    A new nonlinear, process-oriented, quasi-two-dimensional (Q2D) model is described for microwave laterally diffused MOS (LDMOS) power transistors. A set of one-dimensional energy transport equations are solved across a two-dimensional cross-section in a “current-driven” form. The model accounts for avalanche breakdown and gate conduction, and accurately predicts DC and microwave characteristics at execution speeds sufficiently fast for circuit simulation applications

    New high-pressure phases of ammonia dihydrate

    Get PDF

    Power-up: a reanalysis of 'power failure' in neuroscience using mixture modelling

    Get PDF
    Evidence for endemically low statistical power has recently cast neuroscience findings into doubt. If low statistical power plagues neuroscience, this reduces confidence in reported effects. However, if statistical power is not uniformly low, such blanket mistrust might not be warranted. Here, we provide a different perspective on this issue, analysing data from an influential paper reporting a median power of 21% across 49 meta-analyses (Button et al., 2013). We demonstrate, using Gaussian mixture modelling, that the sample of 730 studies included in that analysis comprises several subcomponents; therefore the use of a single summary statistic is insufficient to characterise the nature of the distribution. We find that statistical power is extremely low for studies included in meta-analyses that reported a null result; and that it varies substantially across subfields of neuroscience, with particularly low power in candidate gene association studies. Thus, while power in neuroscience remains a critical issue, the notion that studies are systematically underpowered is not the full story: low power is far from a universal problem. SIGNIFICANCE STATEMENT: Recently, researchers across the biomedical and psychological sciences have become concerned with the reliability of results. One marker for reliability is statistical power: the probability of finding a statistically significant result, given that the effect exists. Previous evidence suggests that statistical power is low across the field of neuroscience. Our results present a more comprehensive picture of statistical power in neuroscience: on average, studies are indeed underpowered-some very seriously so-but many studies show acceptable or even exemplary statistical power. We show that this heterogeneity in statistical power is common across most subfields in neuroscience (psychology, neuroimaging, etc.). This new, more nuanced picture of statistical power in neuroscience could affect not only scientific understanding, but potentially policy and funding decisions for neuroscience research

    Making it real: exploring the potential of Augmented Reality for teaching primary school science

    Get PDF
    The use of Augmented Reality (AR) in formal education could prove a key component in future learning environments that are richly populated with a blend of hardware and software applications. However, relatively little is known about the potential of this technology to support teaching and learning with groups of young children in the classroom. Analysis of teacher-child dialogue in a comparative study between use of an AR virtual mirror interface and more traditional science teaching methods for 10-year-old children, revealed that the children using AR were less engaged than those using traditional resources. We suggest four design requirements that need to be considered if AR is to be successfully adopted into classroom practice. These requirements are: flexible content that teachers can adapt to the needs of their children, guided exploration so learning opportunities can be maximised, in a limited time, and attention to the needs of institutional and curricular requirements

    Long-term interleukin-6 levels and subsequent risk of coronary heart disease: Two new prospective studies and a systematic review

    Get PDF
    Background The relevance to coronary heart disease (CHD) of cytokines that govern inflammatory cascades, such as interleukin-6 (IL-6), may be underestimated because such mediators are short acting and prone to fluctuations. We evaluated associations of long-term circulating IL-6 levels with CHD risk (defined as nonfatal myocardial infarction [MI] or fatal CHD) in two population-based cohorts, involving serial measurements to enable correction for within-person variability. We updated a systematic review to put the new findings in context. Methods and Findings Measurements were made in samples obtained at baseline from 2,138 patients who had a first-ever nonfatal MI or died of CHD during follow-up, and from 4,267 controls in two cohorts comprising 24,230 participants. Correction for within-person variability was made using data from repeat measurements taken several years apart in several hundred participants. The year-to-year variability of IL-6 values within individuals was relatively high (regression dilution ratios of 0.41, 95% confidence interval [CI] 0.28-0.53, over 4 y, and 0.35, 95% CI 0.23-0.48, over 12 y). Ignoring this variability, we found an odds ratio for CHD, adjusted for several established risk factors, of 1.46 (95% CI 1.29-1.65) per 2 standard deviation (SD) increase of baseline IL-6 values, similar to that for baseline C-reactive protein. After correction for within-person variability, the odds ratio for CHD was 2.14 (95% CI 1.45-3.15) with long-term average ("usual'') IL-6, similar to those for some established risk factors. Increasing IL-6 levels were associated with progressively increasing CHD risk. An updated systematic review of electronic databases and other sources identified 15 relevant previous population-based prospective studies of IL-6 and clinical coronary outcomes (i.e., MI or coronary death). Including the two current studies, the 17 available prospective studies gave a combined odds ratio of 1.61 (95% CI 1.42-1.83) per 2 SD increase in baseline IL-6 (corresponding to an odds ratio of 3.34 [95% CI 2.45-4.56] per 2 SD increase in usual [long-term average] IL-6 levels). Conclusions Long-term IL-6 levels are associated with CHD risk about as strongly as are some major established risk factors, but causality remains uncertain. These findings highlight the potential relevance of IL-6-mediated pathways to CH
    corecore