7,450 research outputs found

    Jacobi fields along harmonic 2-spheres in S3S^3 and S4S^4 are not all integrable

    Full text link
    In a previous paper, we showed that any Jacobi field along a harmonic map from the 2-sphere to the complex projective plane is integrable (i.e., is tangent to a smooth variation through harmonic maps). In this paper, in contrast, we show that there are (non-full) harmonic maps from the 2-sphere to the 3-sphere and 4-sphere which have non-integrable Jacobi fields. This is particularly surprising in the case of the 3-sphere where the space of harmonic maps of any degree is a smooth manifold, each map having image in a totally geodesic 2-sphere.Comment: 43 pages. Some typos corrected; introduction expande

    Topological restrictions for circle actions and harmonic morphisms

    Full text link
    Let MmM^m be a compact oriented smooth manifold which admits a smooth circle action with isolated fixed points which are isolated as singularities as well. Then all the Pontryagin numbers of MmM^m are zero and its Euler number is nonnegative and even. In particular, MmM^m has signature zero. Since a non-constant harmonic morphism with one-dimensional fibres gives rise to a circle action we have the following applications: (i) many compact manifolds, for example CPnCP^{n}, K3K3 surfaces, S2nΓ—PgS^{2n}\times P_g (nβ‰₯2n\geq2) where PgP_g is the closed surface of genus gβ‰₯2g\geq2 can never be the domain of a non-constant harmonic morphism with one-dimensional fibres whatever metrics we put on them; (ii) let (M4,g)(M^4,g) be a compact orientable four-manifold and Ο•:(M4,g)β†’(N3,h)\phi:(M^4,g)\to(N^3,h) a non-constant harmonic morphism. Suppose that one of the following assertions holds: (1) (M4,g)(M^4,g) is half-conformally flat and its scalar curvature is zero, (2) (M4,g)(M^4,g) is Einstein and half-conformally flat, (3) (M4,g,J)(M^4,g,J) is Hermitian-Einstein. Then, up to homotheties and Riemannian coverings, Ο•\phi is the canonical projection T4β†’T3T^4\to T^3 between flat tori.Comment: 18 pages; Minor corrections to Proposition 3.1 and small changes in Theorem 2.8, proof of Theorem 3.3 and Remark 3.
    • …
    corecore