research

Topological restrictions for circle actions and harmonic morphisms

Abstract

Let MmM^m be a compact oriented smooth manifold which admits a smooth circle action with isolated fixed points which are isolated as singularities as well. Then all the Pontryagin numbers of MmM^m are zero and its Euler number is nonnegative and even. In particular, MmM^m has signature zero. Since a non-constant harmonic morphism with one-dimensional fibres gives rise to a circle action we have the following applications: (i) many compact manifolds, for example CPnCP^{n}, K3K3 surfaces, S2nΓ—PgS^{2n}\times P_g (nβ‰₯2n\geq2) where PgP_g is the closed surface of genus gβ‰₯2g\geq2 can never be the domain of a non-constant harmonic morphism with one-dimensional fibres whatever metrics we put on them; (ii) let (M4,g)(M^4,g) be a compact orientable four-manifold and Ο•:(M4,g)β†’(N3,h)\phi:(M^4,g)\to(N^3,h) a non-constant harmonic morphism. Suppose that one of the following assertions holds: (1) (M4,g)(M^4,g) is half-conformally flat and its scalar curvature is zero, (2) (M4,g)(M^4,g) is Einstein and half-conformally flat, (3) (M4,g,J)(M^4,g,J) is Hermitian-Einstein. Then, up to homotheties and Riemannian coverings, Ο•\phi is the canonical projection T4β†’T3T^4\to T^3 between flat tori.Comment: 18 pages; Minor corrections to Proposition 3.1 and small changes in Theorem 2.8, proof of Theorem 3.3 and Remark 3.

    Similar works

    Full text

    thumbnail-image

    Available Versions