5,542 research outputs found

    Effects of Strain on Electronic Properties of Graphene

    Get PDF
    We present first-principles calculations of electronic properties of graphene under uniaxial and isotropic strains, respectively. The semi-metallic nature is shown to persist up to a very large uniaxial strain of 30% except a very narrow strain range where a tiny energy gap opens. As the uniaxial strain increases along a certain direction, the Fermi velocity parallel to it decreases quickly and vanishes eventually, whereas the Fermi velocity perpendicular to it increases by as much as 25%. Thus, the low energy properties with small uniaxial strains can be described by the generalized Weyl's equation while massless and massive electrons coexist with large ones. The work function is also predicted to increase substantially as both the uniaxial and isotropic strain increases. Hence, the homogeneous strain in graphene can be regarded as the effective electronic scalar potential.Comment: 4 pages, 6 figures; Published versio

    Emergence of robust 2D skyrmions in SrRuO3 ultrathin film without the capping layer

    Full text link
    Magnetic skyrmions have fast evolved from a novelty, as a realization of topologically protected structure with particle-like character, into a promising platform for new types of magnetic storage. Significant engineering progress was achieved with the synthesis of compounds hosting room-temperature skyrmions in magnetic heterostructures, with the interfacial Dzyaloshinskii-Moriya interactions (DMI) conducive to the skyrmion formation. Here we report findings of ultrathin skyrmion formation in a few layers of SrRuO3 grown on SrTiO3 substrate without the heavy-metal capping layer. Measurement of the topological Hall effect (THE) reveals a robust stability of skyrmions in this platform, judging from the high value of the critical field 1.57 Tesla (T) at low temperature. THE survives as the field is tilted by as much as 85 degrees at 10 Kelvin, with the in-plane magnetic field reaching up to 6.5 T. Coherent Bragg Rod Analysis, or COBRA for short, on the same film proves the rumpling of the Ru-O plane to be the source of inversion symmetry breaking and DMI. First-principles calculations based on the structure obtained from COBRA find significant magnetic anisotropy in the SrRuO3 film to be the main source of skyrmion robustness. These features promise a few-layer SRO to be an important new platform for skyrmionics, without the necessity of introducing the capping layer to boost the spin-orbit coupling strength artificially.Comment: Supplementary Information available upon reques
    corecore