13,789 research outputs found
Generating a Schr\"odinger-cat-like state via a coherent superposition of photonic operations
We propose an optical scheme to generate a superposition of coherent states
with enhanced size adopting an interferometric setting at the single-photon
level currently available in the laboratory. Our scheme employs a nondegenerate
optical parametric amplifier together with two beam splitters so that the
detection of single photons at the output conditionally implements the desired
superposition of second-order photonic operations. We analyze our proposed
scheme by considering realistic on-off photodetectors with nonideal efficiency
in heralding the success of conditional events. A high-quality performance of
our scheme is demonstrated in view of various criteria such as quantum
fidelity, mean output energy, and measure of quantum interference
Isobar of an ideal Bose gas within the grand canonical ensemble
We investigate the isobar of an ideal Bose gas confined in a cubic box within
the grand canonical ensemble, for a large yet finite number of particles, N.
After solving the equation of the spinodal curve, we derive precise formulae
for the supercooling and the superheating temperatures which reveal an N^{-1/3}
or N^{-1/4} power correction to the known Bose-Einstein condensation
temperature in the thermodynamic limit. Numerical computations confirm the
accuracy of our analytical approximation, and further show that the isobar
zigzags on the temperature-volume plane if N is greater than or equal to 14393.
In particular, for the Avogadro's number of particles, the volume expands
discretely about 10^5 times. Our results quantitatively agree with a previous
study on the canonical ensemble within 0.1% error.Comment: 6 pages, 2 figures; Reference added. Accepted for publication in
Phys. Rev.
Protein Clusters on the T Cell Surface May Suppress Spurious Early Signaling Events
T cells play an important role in the adaptive immune system, quickly activating effector functions in response to small numbers of antigenic peptides but rarely activating in response to constant interaction with most endogenous peptides. Emerging experimental evidence suggests that key membrane-bound signaling proteins such as the T cell receptor and the adaptor protein Lat are spatially organized into small clusters on the T cell membrane. We use spatially resolved, stochastic computer simulations to study how the inhomogeneous distribution of molecules affects the portion of the T cell signaling network in which the kinase ZAP-70, originating in T cell receptor clusters, phosphorylates Lat. To gain insight into the effects of protein clustering, we compare the signaling response from membranes with clustered proteins to the signaling response from membranes with homogeneously distributed proteins. Given a fixed amount of ZAP-70 (a proxy for degree of TCR stimulation) that must diffuse into contact with Lat molecules, the spatially homogeneous system responds faster and results in higher levels of phosphorylated Lat. Analysis of the spatial distribution of proteins demonstrates that, in the homogeneous system, nearest ZAP-70 and Lat proteins are closer on average and fewer Lat molecules share the same closest ZAP-70 molecule, leading to the faster response time. The results presented here suggest that spatial clustering of proteins on the T cell membrane may suppress the propagation of signal from ZAP-70 to Lat, thus providing a regulatory mechanism by which T cells suppress transient, spurious signals induced by stimulation of T cell receptors by endogenous peptides. Because this suppression of spurious signals may occur at a cost to sensitivity, we discuss recent experimental results suggesting other potential mechanisms by which ZAP-70 and Lat may interact to initiate T cell activation.United States. National Institutes of Health (Grant 1P01AI091580-01
Wave Mechanics of Two Hard Core Quantum Particles in 1-D Box
The wave mechanics of two impenetrable hard core particles in 1-D box is
analyzed. Each particle in the box behaves like an independent entity
represented by a {\it macro-orbital} (a kind of pair waveform). While the
expectation value of their interaction, ,
satisfies (or , with being the size
of the box). The particles in their ground state define a close-packed
arrangement of their wave packets (with , phase position
separation and momentum ) and experience a
mutual repulsive force ({\it zero point repulsion}) which
also tries to expand the box. While the relative dynamics of two particles in
their excited states represents usual collisional motion, the same in their
ground state becomes collisionless. These results have great significance in
determining the correct microscopic understanding of widely different many body
systems.Comment: 12 pages, no figur
The UV Continuum of Quasars: Models and SDSS Spectral Slopes
We measure long (2200-4000 ang) and short (1450-2200 ang) wavelength spectral
slopes \alpha (F_\nu proportional to \nu^\alpha) for quasar spectra from the
Sloan Digital Sky Survey. The long and short wavelength slopes are computed
from 3646 and 2706 quasars with redshifts in the z=0.76-1.26 and z=1.67-2.07
ranges, respectively. We calculate mean slopes after binning the data by
monochromatic luminosity at 2200 ang and virial mass estimates based on
measurements of the MgII line width and 3000 ang continuum luminosity. We find
little evidence for mass dependent variations in the mean slopes, but a
significant luminosity dependent trend in the near UV spectral slopes is
observed with larger (bluer) slopes at higher luminosities. The far UV slopes
show no clear variation with luminosity and are generally lower (redder) than
the near UV slopes at comparable luminosities, suggesting a slightly concave
quasar continuum shape. We compare these results with Monte Carlo distributions
of slopes computed from models of thin accretion disks, accounting for
uncertainties in the mass estimates. The model slopes produce mass dependent
trends which are larger than observed, though this conclusion is sensitive to
the assumed uncertainties in the mass estimates. The model slopes are also
generally bluer than observed, and we argue that reddening by dust intrinsic to
the source or host galaxy may account for much of the discrepancy.Comment: To be published in ApJ, 18 pages, 10 figure
Heralded quantum steering over a high-loss channel
Entanglement is the key resource for many long-range quantum information
tasks, including secure communication and fundamental tests of quantum physics.
These tasks require robust verification of shared entanglement, but performing
it over long distances is presently technologically intractable because the
loss through an optical fiber or free-space channel opens up a detection
loophole. We design and experimentally demonstrate a scheme that verifies
entanglement in the presence of at least dB of added loss,
equivalent to approximately km of telecommunication fiber. Our protocol
relies on entanglement swapping to herald the presence of a photon after the
lossy channel, enabling event-ready implementation of quantum steering. This
result overcomes the key barrier in device-independent communication under
realistic high-loss scenarios and in the realization of a quantum repeater.Comment: 8 pages, 5 figure
Linear Momentum Transfer in 40-150-MeV Proton-induced Reactions with 238-U
This research was sponsored by the National Science Foundation Grant NSF PHY 87-1440
- …