74 research outputs found

    Fundamental Study Of Mechanical And Chemical Degradation Mechanisms Of Pem Fuel Cell Membranes

    Get PDF
    One of the important factors determining the lifetime of polymer electrolyte membrane fuel cells (PEMFCs) is membrane degradation and failure. The lack of effective mitigation methods is largely due to the currently very limited understanding of the underlying mechanisms for mechanical and chemical degradations of fuel cell membranes. In order to understand degradation of membranes in fuel cells, two different experimental approaches were developed; one is fuel cell testing under open circuit voltage (OCV) with bi-layer configuration of the membrane electrode assemblies (MEAs) and the other is a modified gas phase Fenton\u27s test. Accelerated degradation tests for polymer electrolyte membrane (PEM) fuel cells are frequently conducted under open circuit voltage (OCV) conditions at low relative humidity (RH) and high temperature. With the bi-layer MEA technique, it was found that membrane degradation is highly localized across thickness direction of the membrane and qualitatively correlated with location of platinum (Pt) band through mechanical testing, Infrared (IR) spectroscopy, fluoride emission, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy dispersive spectroscopy (EDS) measurement. One of the critical experimental observations is that mechanical behavior of membranes subjected to degradation via Fenton\u27s reaction exhibit completely different behavior with that of membranes from the OCV testing. This result led us to believe that other critical factors such as mechanical stress may affect on membrane degradation and therefore, a modified gas phase Fenton\u27s test setup was developed to test the hypothesis. Interestingly, the results showed that mechanical stress directly accelerates the degradation rate of ionomer membranes, implying that the rate constant for the degradation reaction is a function of mechanical stress in addition to commonly known factors such as temperature and humidity. Membrane degradation induced by mechanical stress necessitates the prediction of the stress distribution in the membrane under various conditions. One of research focuses was on the developing micromechanism-inspired continuum model for ionomer membranes. The model is the basis for stress analysis, and is based on a hyperelastic model with reptation-inspired viscous flow rule and multiplicative decomposition of viscoelastic and plastic deformation gradient. Finally, evaluation of the membrane degradation requires a fuel cell model since the degradation occurs under fuel cell operating conditions. The fuel cell model included structural mechanics models and multiphysics models which represents other phenomena such as gas and water transport, charge conservation, electrochemical reactions, and energy conservation. The combined model was developed to investigate the compression effect on fuel cell performance and membrane stress distribution

    Inhomogeneous Degradation of Polymer Electrolyte Membrane in PEM Fuel Cells

    Get PDF
    Membrane durability is one of the technical barriers for the commercialization of polymer electrolyte membrane (PEM) fuel cells. Membrane embrittlement (a form of mechanical weakening) can lead to the frequently observed “sudden death” behavior of PEM fuel cells. It is the objective of this study to explore the fundamental mechanisms of the mechanical weakening of perfluorosulfonic acid (PFSA) based electrolyte membranes during the accelerated degradation test

    Advances in AFM Imaging Applications for Characterizing the Biophysical Properties of Amyloid Fibrils

    Get PDF
    Although the formation mechanism of amyloid fibrils in bodies is still debated, it has recently been reported how amyloid fibrils can be formed in vitro. Accordingly, we have gained a better understanding of the self-assembly mechanism and intrinsic properties of amyloid fibrils. Because the structure of amyloid fibrils consists of nanoscaled insoluble strands (a few nanometers in diameter and micrometers long), a special tool is needed to study amyloid fibrils at length. Atomic force microscopy (AFM) is supposed to be a versatile toolkit to probe such a tiny biomolecule. The physical/chemical properties of amyloid fibrils have been explored by AFM. In particular, AFM enables the visualization of amyloid fibrillation with different incubation times as well as the concentrations of the formed amyloid fibrils as affected by fibril diameters and lengths. Very recently, the minute structural changes and/or electrical properties of amyloid fibrils have been made by using advanced AFM techniques including dynamic liquid AFM, PeakForce QNM (quantitative nanomechanical mapping), and Kelvin probe force microscopy (KPFM). Herein, we summarize the biophysical properties of amyloid fibrils that are newly discovered with the help of those advanced AFM techniques and suggest our perspectives and future directions for the study of amyloid fibrils

    Accelerated identification of equilibrium structures of multicomponent inorganic crystals using machine learning potentials

    Full text link
    The discovery of new multicomponent inorganic compounds can provide direct solutions to many scientific and engineering challenges, yet the vast size of the uncharted material space dwarfs current synthesis throughput. While the computational crystal structure prediction is expected to mitigate this frustration, the NP-hardness and steep costs of density functional theory (DFT) calculations prohibit material exploration at scale. Herein, we introduce SPINNER, a highly efficient and reliable structure-prediction framework based on exhaustive random searches and evolutionary algorithms, which is completely free from empiricism. Empowered by accurate neural network potentials, the program can navigate the configuration space faster than DFT by more than 102^{2}-fold. In blind tests on 60 ternary compositions diversely selected from the experimental database, SPINNER successfully identifies experimental (or theoretically more stable) phases for ~80% of materials within 5000 generations, entailing up to half a million structure evaluations for each composition. When benchmarked against previous data mining or DFT-based evolutionary predictions, SPINNER identifies more stable phases in the majority of cases. By developing a reliable and fast structure-prediction framework, this work opens the door to large-scale, unbounded computational exploration of undiscovered inorganic crystals.Comment: 3 figure

    Real-time label-free quantitative monitoring of biomolecules without surface binding by floating-gate complementary metal-oxide semiconductor sensor array integrated with readout circuitry

    Get PDF
    We report a label-free field-effect sensing array integrated with complementary metal-oxide semiconductor (CMOS) readout circuitry to detect the surface potential determined by the negative charge in DNA molecules. For real-time DNA quantification, we have demonstrated the measurements of DNA molecules without immobilizing them on the sensing surface which is composed of an array of floating-gate CMOS transistors. This nonimmobilizing technique allows the continuous monitoring of the amount of charged molecules by injecting DNA solutions sequentially. We have carried out the real-time quantitative measurement of 19 bp oligonucleotides and analyzed its sensitivity as a function of pH in buffer solutions. (c) 2007 American Institute of Physics.open2

    Accelerated Testing Validation

    Get PDF
    The DOE Fuel Cell technical team recommended ASTs were performed on 2 different MEAs (designated P5 and HD6) from Ballard Power Systems. These MEAs were also incorporated into stacks and operated in fuel cell bus modules that were either operated in the field (three P5 buses) in Hamburg, or on an Orange county transit authority drive cycle in the laboratory (HD6 bus module). Qualitative agreement was found in the degradation mechanisms and rates observed in the AST and in the field. The HD6 based MEAs exhibited lower voltage degradation rates (due to catalyst corrosion) and slower membrane degradation rates in the field as reflected by their superior performance in the high potential hold and open-circuit potential AST tests. The quantitative correlation of the degradation rates will have to take into account the various stressors in the field including temperature, relative humidity, start/stops and voltage cycles

    The role of 99mTc-DPD bone SPECT/CT in the management of growth disturbance of the long bones in pediatric patients: a retrospective observational study

    Get PDF
    Backgrounds Determining the precise localization of diseased physes is crucial for guiding the treatment of growth disturbances. Conventional radiography, computed tomography (CT), and magnetic resonance imaging only provide information on physeal anatomy. Planar bone scintigraphy and bone single-photon emission computed tomography (SPECT) resolutions are suboptimal for clinically managing growth disturbances. Bone SPECT/CT, which provides high-resolution functional information, can be a useful tool for evaluating growth disturbances. The purposes of this study were to identify the conditions in which bone SPECT/CT outperforms planar scintigraphy or SPECT for evaluating the location and activity of diseased physes and to assess surgical outcomes using bone SPECT/CT findings in pediatric patients experiencing long bone growth disturbances. Methods Fifty-nine patients who underwent bone SPECT/CT between January 2018 and January 2021 to evaluate physeal activity using technetium-99 m-labeled 2,3-dicarboxypropane-1,1-diphosphonate (99mTc-DPD) were included. The proportions of patients for whom certain modalities provided sufficient data for selecting treatment plans for growth disturbances were compared based on the site of the diseased physis, growth disturbance cause, and shape of deformity (i.e., SPECT/CT vs. planar scintigraphy and SPECT/CT vs. SPECT). For assessing surgical outcomes, progression of post-surgical deformity was investigated by measuring the angles reflecting the degree of deformity, iliac crest height difference, or ulnar variance on radiographs. Results Bone SPECT/CT was sufficient for selecting a treatment plan, but planar scintigraphy or SPECT alone was insufficient in every 10 patients with diseased physes inside the femoral head (p = 0.002) and in every six with physes that were severely deformed or whose locations were unclear on conventional radiography (p = 0.03). In the proximal or distal tibia, where the tibial and fibular physes often overlapped on planar scintigraphy due to leg rotation, bone SPECT/CT was sufficient in 33/34 patients (97%), but planar scintigraphy and SPECT were sufficient in 10/34 (29%) (p < 0.001) and 24/34 (71%) patients, respectively (p = 0.004). No progression or deformity recurrence occurred. Conclusions Bone SPECT/CT may be indicated in proximal femoral growth disturbance, when the physis is unclear on conventional radiography or severely deformed, the leg exhibits rotational deformity, or the patient is noncompliant

    The Early Light Curve of a Type Ia Supernova 2021hpr in NGC 3147: Progenitor Constraints with the Companion Interaction Model

    Full text link
    The progenitor system of Type Ia supernovae (SNe Ia) is expected to be a close binary system of a carbon/oxygen white dwarf (WD) and a non-degenerate star or another WD. Here, we present results from a high-cadence monitoring observation of SN 2021hpr in a spiral galaxy, NGC 3147, and constraints on the progenitor system based on its early multi-color light curve data. First, we classify SN 2021hpr as a normal SN Ia from its long-term photometric and spectroscopic data. More interestingly, we found a significant "early excess" in the light curve over a simple power-law t2\sim t^{2} evolution. The early light curve evolves from blue to red and blue during the first week. To explain this, we fitted the early part of BVRIBVRI-band light curves with a two-component model of the ejecta-companion interaction and a simple power-law model. The early excess and its color can be explained by shock cooling emission due to a companion star having a radius of 8.84±0.588.84\pm0.58RR_{\odot}. We also examined HST pre-explosion images with no detection of a progenitor candidate, consistent with the above result. However, we could not detect signs of a significant amount of the stripped mass from a non-degenerate companion star (0.003M\lesssim0.003\,M_{\odot} for Hα\alpha emission). The early excess light in the multi-band light curve supports a non-degenerate companion in the progenitor system of SN 2021hpr. At the same time, the non-detection of emission lines opens a door for other methods to explain this event.Comment: 26 pages, 13 figures + appendix, Accepted for publication in Ap

    Resting-state prefrontal EEG biomarker in correlation with postoperative delirium in elderly patients

    Get PDF
    Postoperative delirium (POD) is associated with adverse outcomes in elderly patients after surgery. Electroencephalography (EEG) can be used to develop a potential biomarker for degenerative cerebral dysfunctions, including mild cognitive impairment and dementia. This study aimed to explore the relationship between preoperative EEG and POD. We included 257 patients aged &gt;70 years who underwent spinal surgery. We measured the median dominant frequency (MDF), which is a resting-state EEG biomarker involving intrinsic alpha oscillations that reflect an idle cortical state, from the prefrontal regions. Additionally, the mini-mental state examination and Montreal cognitive assessment (MoCA) were performed before surgery as well as 5 days after surgery. For long-term cognitive function follow up, the telephone interview for cognitive status™ (TICS) was performed 1 month and 1 year after surgery. Fifty-two (20.2%) patients were diagnosed with POD. A multivariable logistic regression analysis that included age, MoCA score, Charlson comorbidity index score, Mini Nutritional Assessment, and the MDF as variables revealed that the MDF had a significant odds ratio of 0.48 (95% confidence interval 0.27–0.85). Among the patients with POD, the postoperative neurocognitive disorders could last up to 1 year. Low MDF on preoperative EEG was associated with POD in elderly patients undergoing surgery. EEG could be a novel potential tool for identifying patients at a high risk of POD
    corecore