5 research outputs found

    Metabolomic analysis of low and high biofilm-forming Helicobacter pylori strains

    Get PDF
    The biofilm-forming-capability of Helicobacter pylori has been suggested to be among factors influencing treatment outcome. However, H. pylori exhibit strain-to-strain differences in biofilm-forming-capability. Metabolomics enables the inference of spatial and temporal changes of metabolic activities during biofilm formation. Our study seeks to examine the differences in metabolome of low and high biofilm-formers using the metabolomic approach. Eight H. pylori clinical strains with different biofilm-forming-capability were chosen for metabolomic analysis. Bacterial metabolites were extracted using Bligh and Dyer method and analyzed by Liquid Chromatography/Quadrupole Time-of-Flight mass spectrometry. The data was processed and analyzed using the MassHunter Qualitative Analysis and the Mass Profiler Professional programs. Based on global metabolomic profiles, low and high biofilm-formers presented as two distinctly different groups. Interestingly, low-biofilm-formers produced more metabolites than high-biofilm-formers. Further analysis was performed to identify metabolites that differed significantly (p-value < 0.005) between low and high biofilm-formers. These metabolites include major categories of lipids and metabolites involve in prostaglandin and folate metabolism. Our findings suggest that biofilm formation in H. pylori is complex and probably driven by the bacterium' endogenous metabolism. Understanding the underlying metabolic differences between low and high biofilm-formers may enhance our current understanding of pathogenesis, extragastric survival and transmission of H. pylori infections

    Intra-temporal facial nerve centerline segmentation for navigated temporal bone surgery

    No full text
    Approaches through the temporal bone require surgeons to drill away bone to expose a target skull base lesion while evading vital structures contained within it, such as the sigmoid sinus, jugular bulb, and facial nerve. We hypothesize that an augmented neuronavigation system that continuously calculates the distance to these structures and warns if the surgeon drills too close, will aid in making safe surgical approaches. Contemporary image guidance systems are lacking an automated method to segment the inhomogeneous and complexly curved facial nerve. Therefore, we developed a segmentation method to delineate the intra-temporal facial nerve centerline from clinically available temporal bone CT images semi-automatically. Our method requires the user to provide the start- and end-point of the facial nerve in a patient's CT scan, after which it iteratively matches an active appearance model based on the shape and texture of forty facial nerves. Its performance was evaluated on 20 patients by comparison to our gold standard: manually segmented facial nerve centerlines. Our segmentation method delineates facial nerve centerlines with a maximum error along its whole trajectory of 0.40±0.20 mm (mean±standard deviation). These results demonstrate that our model-based segmentation method can robustly segment facial nerve centerlines. Next, we can investigate whether integration of this automated facial nerve delineation with a distance calculating neuronavigation interface results in a system that can adequately warn surgeons during temporal bone drilling, and effectively diminishes risks of iatrogenic facial nerve palsy. © 2011 SPIE

    Intra-temporal facial nerve centerline segmentation for navigated temporal bone surgery

    No full text
    Approaches through the temporal bone require surgeons to drill away bone to expose a target skull base lesion while evading vital structures contained within it, such as the sigmoid sinus, jugular bulb, and facial nerve. We hypothesize that an augmented neuronavigation system that continuously calculates the distance to these structures and warns if the surgeon drills too close, will aid in making safe surgical approaches. Contemporary image guidance systems are lacking an automated method to segment the inhomogeneous and complexly curved facial nerve. Therefore, we developed a segmentation method to delineate the intra-temporal facial nerve centerline from clinically available temporal bone CT images semi-automatically. Our method requires the user to provide the start- and end-point of the facial nerve in a patient's CT scan, after which it iteratively matches an active appearance model based on the shape and texture of forty facial nerves. Its performance was evaluated on 20 patients by comparison to our gold standard: manually segmented facial nerve centerlines. Our segmentation method delineates facial nerve centerlines with a maximum error along its whole trajectory of 0.40±0.20 mm (mean±standard deviation). These results demonstrate that our model-based segmentation method can robustly segment facial nerve centerlines. Next, we can investigate whether integration of this automated facial nerve delineation with a distance calculating neuronavigation interface results in a system that can adequately warn surgeons during temporal bone drilling, and effectively diminishes risks of iatrogenic facial nerve palsy. © 2011 SPIE

    Historically controlled comparison of glucocorticoids with or without tocilizumab versus supportive care only in patients with COVID-19-associated cytokine storm syndrome: results of the CHIC study

    No full text
    Objectives To prospectively investigate in patients with severe COVID-19-associated cytokine storm syndrome (CSS) whether an intensive course of glucocorticoids with or without tocilizumab accelerates clinical improvement, reduces mortality and prevents invasive mechanical ventilation, in comparison with a historic control group of patients who received supportive care only.Methods From 1 April 2020, patients with COVID-19-associated CSS, defined as rapid respiratory deterioration plus at least two out of three biomarkers with important elevations (C-reactive protein >100 mg/L; ferritin >900 mu g/L; D-dimer >1500 mu g/L), received high-dose intravenous methylprednisolone for 5 consecutive days (250 mg on day 1 followed by 80 mg on days 2-5). If the respiratory condition had not improved sufficiently (in 43%), the interleukin-6 receptor blocker tocilizumab (8 mg/kg body weight, single infusion) was added on or after day 2. Control patients with COVID-19-associated CSS (same definition) were retrospectively sampled from the pool of patients (n=350) admitted between 7 March and 31 March, and matched one to one to treated patients on sex and age. The primary outcome was >= 2 stages of improvement on a 7-item WHO-endorsed scale for trials in patients with severe influenza pneumonia, or discharge from the hospital. Secondary outcomes were hospital mortality and mechanical ventilation.Results At baseline all patients with COVID-19 in the treatment group (n=86) and control group (n=86) had symptoms of CSS and faced acute respiratory failure. Treated patients had 79% higher likelihood on reaching the primary outcome (HR: 1.8; 95%CI 1.2 to 2.7) (7 days earlier), 65% less mortality (HR: 0.35; 95%CI 0.19 to 0.65) and 71% less invasive mechanical ventilation (HR: 0.29; 95%CI 0.14 to 0.65). Treatment effects remained constant in confounding and sensitivity analyses.Conclusions A strategy involving a course of high-dose methylprednisolone, followed by tocilizumab if needed, may accelerate respiratory recovery, lower hospital mortality and reduce the likelihood of invasive mechanical ventilation in COVID-19-associated CSS.Pathophysiology and treatment of rheumatic disease
    corecore