71 research outputs found

    Examining the Potential of Vitamin C Supplementation in Tissue-Engineered Equine Superficial Digital Flexor Tendon Constructs

    Get PDF
    Because equine tendinopathies are slow to heal and often recur, therapeutic strategies are being considered that aid tendon repair. Given the success of utilizing vitamin C to promote tenogenesis in other species, we hypothesized that vitamin C supplementation would produce dose-dependent improvements in the tenogenic properties of tendon proper (TP) and peritenon (PERI) cells of the equine superficial digital flexor tendon (SDFT). Equine TP- and PERI-progenitor-cell-seeded fibrin three-dimensional constructs were supplemented with four concentrations of vitamin C. The gene expression profiles of the constructs were assessed with 3\u27-Tag-Seq and real-time quantitative polymerase chain reaction (RT-qPCR); collagen content and fibril ultrastructure were also analyzed. Moreover, cells were challenged with dexamethasone to determine the levels of cytoprotection afforded by vitamin C. Expression profiling demonstrated that vitamin C had an anti-inflammatory effect on TP and PERI cell constructs. Moreover, vitamin C supplementation mitigated the degenerative pathways seen in tendinopathy and increased collagen content in tendon constructs. When challenged with dexamethasone in two-dimensional culture, vitamin C had a cytoprotective effect for TP cells but not necessarily for PERI cells. Future studies will explore the effects of vitamin C on these cells during inflammation and within the tendon niche in vivo

    The Effects of Supplemental Dietary Chitosan on Broiler Performance and Myopathic Features of White Striping

    Get PDF
    White striping (WS) is a common myopathy seen in fast-growing broilers. Studies have demonstrated that chitosan is effective as an antioxidant and has antiobesity and fat-absorption reduction properties. We hypothesized that the dietary supplementation of chitosan would have similar effects when fed to fast-growing broilers and would thus lower WS incidence and improve meat quality. One hundred twenty-six broilers were fed corn-soy diets. The grower and finisher diets contained either 0, 0.2, or 0.4% chitosan. After a 6 wk growth period, birds were euthanized, and then WS and gross pathology scores were assessed. Pectoralis major tissues were collected to evaluate cook loss, drip loss, histopathology scores, and the gene expression of CCR7, LECT2, CD36, PPARG, and PTGS2. There were no significant differences between the broiler weights, thus chitosan did not appear to compromise the overall growth of the broilers. Female broilers fed 0.4% chitosan had the lowest WS incidence, while male broiler fed 0.4% chitosan had the least cook loss. However, gene expression analyses did not offer insight into any grossly or histologically visualized differences in the muscles. Thus, while we can postulate that chitosan could have some positive effect in reducing WS incidence and improving meat quality, further studies are required to better scrutinize the mechanisms by which chitosan affects WS and other such myopathies in fast-growing broilers

    Just-in-Time Decision Making: Preliminary Findings of a Goals of Care Rapid Response Team

    Get PDF
    CONTEXT: The COVID-19 pandemic placed the issue of resource utilization front and center. Our comprehensive cancer center developed a Goals of Care Rapid Response Team (GOC RRT) to optimize resource utilization balanced with goal-concordant patient care. OBJECTIVES: Primary study objective was to evaluate feasibility of the GOC RRT by describing the frequency of consultations that occurred from those requested. Secondary objectives included adherence to consultation processes in terms of core team member participation and preliminary efficacy in limiting care escalation. METHODS: We conducted a retrospective chart review of patients referred to GOC RRT (3/23/2020-9/30/2020). Analysis was descriptive. Categorical variables were compared with Fisher\u27s exact or Chi-Square tests and continuous variables with Mann-Whitney U tests. RESULTS: A total of 89 patients were referred. Eighty-five percent (76 of 89) underwent a total of 95 consultations. Median (range) patient age was 61 (49, 69) years, 54% (48 of 89) male, 19% (17 of 89) Hispanic, 48% (43/89) White, 73% (65 of 89) married/partnered and 66% (59 of 89) Christian. Hematologic malignancies and solid tumors were evenly balanced (53% [47/89] vs. 47% [42 of 89, P = 0.199]). Most patients (82%, 73 of 89) had metastatic disease or relapsed leukemia. Seven percent (6 of 89) had confirmed COVID-19. Sixty-nine percent (61 of 89) died during the index hospitalization. There was no statistically significant difference in demographic or clinical characteristics among groups (no consultation, 1 consultation, \u3e1 consultation). Core team members were present at 64% (61 of 95) of consultations. Care limitation occurred in 74% (56 of 76) of patients. CONCLUSION: GOC RRT consultations were feasible and associated with care limitation. Adherence to core team participation was fair

    Free radicals produced by the oxidation of gallic acid: An electron paramagnetic resonance study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gallic acid (3,4,5-trihydroxybenzoic acid) is found in a wide variety of plants; it is extensively used in tanning, ink dyes, as well as in the manufacturing of paper. The gallate moiety is a key component of many functional phytochemicals. In this work electron paramagnetic spectroscopy (EPR) was used to detect the free radicals generated by the air-oxidation of gallic acid.</p> <p>Results</p> <p>We found that gallic acid produces two different radicals as a function of pH. In the pH range between 7-10, the spectrum of the gallate free radical is a doublet of triplets (a<sup>H </sup>= 1.00 G, a<sup>H </sup>= 0.23 G, a<sup>H </sup>= 0.28 G). This is consistent with three hydrogens providing hyperfine splitting. However, in a more alkaline environment, pH >10, the hyperfine splitting pattern transforms into a 1:2:1 pattern (a<sup>H </sup>(2) = 1.07 G). Using D<sub>2</sub>O as a solvent, we demonstrate that the third hydrogen (<it>i.e</it>. a<sup>H </sup>= 0.28 G) at lower pH is a slowly exchanging hydron, participating in hydrogen bonding with two oxygens in <it>ortho </it>position on the gallate ring. The p<it>K</it><sub>a </sub>of this proton has been determined to be 10.</p> <p>Conclusions</p> <p>This simple and novel approach permitted the understanding of the prototropic equilibrium of the semiquinone radicals generated by gallic acid, a ubiquitous compound, allowing new insights into its oxidation and subsequent reactions.</p

    3D Bioprinting in Microgravity: Opportunities, Challenges, and Possible Applications in Space

    Get PDF
    : 3D bioprinting has developed tremendously in the last couple of years and enables the fabrication of simple, as well as complex, tissue models. The international space agencies have recognized the unique opportunities of these technologies for manufacturing cell and tissue models for basic research in space, in particular for investigating the effects of microgravity and cosmic radiation on different types of human tissues. In addition, bioprinting is capable of producing clinically applicable tissue grafts, and its implementation in space therefore can support the autonomous medical treatment options for astronauts in future long term and far-distant space missions. The article discusses opportunities but also challenges of operating different types of bioprinters under space conditions, mainly in microgravity. While some process steps, most of which involving the handling of liquids, are challenging under microgravity, this environment can help overcome problems such as cell sedimentation in low viscous bioinks. Hopefully, this publication will motivate more researchers to engage in the topic, with publicly available bioprinting opportunities becoming available at the International Space Station (ISS) in the imminent future

    A database application for pre-processing, storage and comparison of mass spectra derived from patients and controls.

    Get PDF
    BACKGROUND: Statistical comparison of peptide profiles in biomarker discovery requires fast, user-friendly software for high throughput data analysis. Important features are flexibility in changing input variables and statistical analysis of peptides that are differentially expressed between patient and control groups. In addition, integration the mass spectrometry data with the results of other experiments, such as microarray analysis, and information from other databases requires a central storage of the profile matrix, where protein id's can be added to peptide masses of interest. RESULTS: A new database application is presented, to detect and identify significantly differentially expressed peptides in peptide profiles obtained from body fluids of patient and control groups. The presented modular software is capable of central storage of mass spectra and results in fast analysis. The software architecture consists of 4 pillars, 1) a Graphical User Interface written in Java, 2) a MySQL database, which contains all metadata, such as experiment numbers and sample codes, 3) a FTP (File Transport Protocol) server to store all raw mass spectrometry files and processed data, and 4) the software package R, which is used for modular statistical calculations, such as the Wilcoxon-Mann-Whitney rank sum test. Statistic analysis by the Wilcoxon-Mann-Whitney test in R demonstrates that peptide-profiles of two patient groups 1) breast cancer patients with leptomeningeal metastases and 2) prostate cancer patients in end stage disease can be distinguished from those of control groups. CONCLUSION: The database application is capable to distinguish patient Matrix Assisted Laser Desorption Ionization (MALDI-TOF) peptide profiles from control groups using large size datasets. The modular architecture of the application makes it possible to adapt the application to handle also large sized data from MS/MS- and Fourier Transform Ion Cyclotron Resonance (FT-ICR) mass spectrometry experiments. It is expected that the higher resolution and mass accuracy of the FT-ICR mass spectrometry prevents the clustering of peaks of different peptides and allows the identification of differentially expressed proteins from the peptide profiles

    3D Bioprinting in Microgravity: Opportunities, Challenges, and Possible Applications in Space

    Get PDF
    3D bioprinting has developed tremendously in the last couple of years and enables the fabrication of simple, as well as complex, tissue models. The international space agencies have recognized the unique opportunities of these technologies for manufacturing cell and tissue models for basic research in space, in particular for investigating the effects of microgravity and cosmic radiation on different types of human tissues. In addition, bioprinting is capable of producing clinically applicable tissue grafts, and its implementation in space therefore can support the autonomous medical treatment options for astronauts in future long term and far-distant space missions. The article discusses opportunities but also challenges of operating different types of bioprinters under space conditions, mainly in microgravity. While some process steps, most of which involving the handling of liquids, are challenging under microgravity, this environment can help overcome problems such as cell sedimentation in low viscous bioinks. Hopefully, this publication will motivate more researchers to engage in the topic, with publicly available bioprinting opportunities becoming available at the International Space Station (ISS) in the imminent future
    • …
    corecore