3 research outputs found

    Interaction of preimplantation factor with the global bovine endometrial transcriptome

    Get PDF
    Preimplantation factor (PIF) is an embryo derived peptide which exerts an immune modulatory effect on human endometrium, promoting immune tolerance to the embryo whilst maintaining the immune response to invading pathogens. While bovine embryos secrete PIF, the effect on the bovine endometrium is unknown. Maternal recognition of pregnancy is driven by an embryo-maternal cross talk, however the process differs between humans and cattle. As many embryos are lost during the early part of pregnancy in cattle, a greater knowledge of factors affecting the embryo-maternal crosstalk, such as PIF, is needed to improve fertility. Therefore, for the first time, we demonstrate the effect of synthetic PIF (sPIF) on the bovine transcriptome in an ex vivo bovine endometrial tissue culture model. Explants were cultured for 30h with sPIF (100nM) or in control media. Total RNA was analysed via RNA-sequencing. As a result of sPIF treatment, 102 genes were differentially expressed compared to the control (Padj<0.1), although none by more than 2-fold. The majority of genes (78) were downregulated. Pathway analysis revealed targeting of several immune based pathways. Genes for the TNF, NF-κB, IL-17, MAPK and TLR signalling pathways were down-regulated by sPIF. However, some immune genes were demonstrated to be upregulated following sPIF treatment, including C3. Steroid biosynthesis was the only over-represented pathway with all genes upregulated. We demonstrate that sPIF can modulate the bovine endometrial transcriptome in an immune modulatory manner, like that in the human endometrium, however, the regulation of genes was much weaker than in previous human work

    Evidence of Immune Modulators in the Secretome of the Equine Tapeworm Anoplocephala perfoliata

    Get PDF
    Anoplocephala perfoliata is a neglected gastro-intestinal tapeworm, commonly infecting horses worldwide. Molecular investigation of A. perfoliata is hampered by a lack of tools to better understand the host–parasite interface. This interface is likely influenced by parasite derived immune modulators released in the secretome as free proteins or components of extracellular vesicles (EVs). Therefore, adult RNA was sequenced and de novo assembled to generate the first A. perfoliata transcriptome. In addition, excretory secretory products (ESP) from adult A. perfoliata were collected and EVs isolated using size exclusion chromatography, prior to proteomic analysis of the EVs, the EV surface and EV depleted ESP. Transcriptome analysis revealed 454 sequences homologous to known helminth immune modulators including two novel Sigma class GSTs, five α-HSP90s, and three α-enolases with isoforms of all three observed within the proteomic analysis of the secretome. Furthermore, secretome proteomics identified common helminth proteins across each sample with known EV markers, such as annexins and tetraspanins, observed in EV fractions. Importantly, 49 of the 454 putative immune modulators were identified across the secretome proteomics contained within and on the surface of EVs in addition to those identified in free ESP. This work provides the molecular tools for A. perfoliata to reveal key players in the host–parasite interaction within the horse host
    corecore