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Abstract: Anoplocephala perfoliata is a neglected gastro-intestinal tapeworm, commonly infecting
horses worldwide. Molecular investigation of A. perfoliata is hampered by a lack of tools to better
understand the host–parasite interface. This interface is likely influenced by parasite derived immune
modulators released in the secretome as free proteins or components of extracellular vesicles (EVs).
Therefore, adult RNA was sequenced and de novo assembled to generate the first A. perfoliata
transcriptome. In addition, excretory secretory products (ESP) from adult A. perfoliata were collected
and EVs isolated using size exclusion chromatography, prior to proteomic analysis of the EVs, the
EV surface and EV depleted ESP. Transcriptome analysis revealed 454 sequences homologous to
known helminth immune modulators including two novel Sigma class GSTs, five α-HSP90s, and
three α-enolases with isoforms of all three observed within the proteomic analysis of the secretome.
Furthermore, secretome proteomics identified common helminth proteins across each sample with
known EV markers, such as annexins and tetraspanins, observed in EV fractions. Importantly, 49
of the 454 putative immune modulators were identified across the secretome proteomics contained
within and on the surface of EVs in addition to those identified in free ESP. This work provides
the molecular tools for A. perfoliata to reveal key players in the host–parasite interaction within the
horse host.

Keywords: Anoplocephala perfoliata; transcriptome; secretome; extracellular vesicles; EV surface; EV
depleted ESP; parasite–host interaction

1. Introduction

The gastro-intestinal tapeworm, Anoplocephala perfoliata, is one of the most prevalent
tapeworm species that infects horses worldwide, with prevalence estimated between 15.8–
44% of horses, yet it remains a neglected parasite with respect to management as low
infection rates are often asymptomatic [1–6]. However, high burdens of A. perfoliata are
linked to abdominal disturbance or pain, including spasmodic colic, ileal impaction [7],
ileocaecal or caeco–caecal intussusception [8,9] and ileal or caecal rupture [10,11] due to the
accumulation of adults at the ileocaecal region that attach to the caecal epithelium [2,12–15].
In such high-level infections, a localised caecal mucosal inflammatory response is acti-
vated at the site of the tapeworm attachment [2,16–18]. Severe caecal tissue damage and
dysfunction likely predisposes horses to colic, which is often fatal during later stages
without treatment [2,14]. Such documented evidence demonstrates the importance of
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further understanding the pathology and biology of A. perfoliata for future diagnostics and
control options.

At present, there is limited mechanistic evidence of how A. perfoliata interacts with
the horse intestinal environment. Therefore, an increased understanding of the underpin-
ning molecular biology of A. perfoliata is required to delineate parasite–host interactions.
Polyomic technologies, such as transcriptomics and proteomics, have generated new omic
database resources to support future control for several other important helminths [19–23].
To date, molecular analysis of A. perfoliata has focussed on the mitochondrial genome
sequence in order to simply assess the phylogenetic relationship with the closely related
Anoplocephala magna [22,24]. However, at present, there is no reference genome or support-
ing transcriptome profiles to support discovery biology in A. perfoliata, which precludes in
depth proteomic profiling. Furthermore, comprehensive nucleotide support would provide
unique biological information for A. perfoliata, to facilitate the identification of genes likely
involved in the pathogenesis of tapeworm infections and tapeworm-host interactions.

Molecules secreted by helminth parasites into the host environment during the course
of infection are termed the excretory/secretory products (ESP) or the secretome and contain
a variety of soluble proteins, glycoproteins, carbohydrates, lipids, and metabolites many
of which are known to have an important role in helminth-mediated immunomodula-
tion [16,25–34]. Investigation of the ESP from tapeworms, such as the protoscoleces of
Echinococcus granulosus, have demonstrated regulation of immune cell differentiation, such
as B10, B17, and Th17 cells in infected mice, accompanied by a downregulation of the
inflammatory response [32]. Furthermore, A. perfoliata has been suggested to downregulate
T-cell responses in the horse in live infections, which was partly attributed to ESP, which
inhibited growth and induced apoptosis of Jurkat cells (human T-cell line) in vitro [16].
However, at present the active key component(s) in A. perfoliata ESP driving these potential
host immunomodulatory mechanisms are yet to be determined [16].

Extracellular vesicles (EVs) are lipid membrane-bound structures released from
helminths as part of the ESP. Parasite EVs are released into the host extracellular en-
vironment and are likely candidates for intercellular communication and immunomod-
ulation [35–37]. To date, EVs released from tapeworms have been identified in adult
Hymenolepis diminuta [38] and Taenia asiatica [39], and from metacestode stages of Taenia
pisiformis [40], Echinococcus granulosus [41–43], Taenia crassiceps, Mesocestoides corti, and
Echinococcus multilocularis [44]. However, EVs from adult equine tapeworms, including
A. perfoliata, have not yet been identified.

Key secretory proteins involved in immune modulation, host interaction and parasite
survival have been identified as part of the ESP as free proteins or as components of EVs
for a number of helminths. Annexins, actins, cathepsin proteases, heat shock proteins
(HSPs), helminth defense molecules (HDMs), glutathione transferases (GSTs), and fatty-
acid binding proteins (FABP) are among a number of such proteins that have been identified
from Fasciola hepatica [27,30,45–48], Calicophoron daubneyi (Rumen Fluke) [21,49], Schistosoma
japonicum [50], and Schistosoma mansoni [51] representing well characterised platyhelminths.
Thus, in depth characterisation of helminth secretomes has the potential to uncover host
parasite interaction mechanisms.

Therefore, understanding of host–parasite interactions and subsequent pathogenesis
are hampered in research neglected parasites such as A. perfoliata by a lack of fundamental
molecular resources. Thus, this work generated the first transcriptome for adult A. perfoliata
to support proteomic investigations. In addition, deploying this novel transcriptome
revealed the A. perfoliata secretome, including EVs, EV surface expressed proteins, and
EV depleted ESP via GeLC and Gel free proteomic approaches. This first comprehensive
coverage of the A. perfoliata secretome has revealed the likely key players in the host–
parasite interaction within the horse host.
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2. Results
2.1. De Novo Assembly of the A. perfoliata Transcriptome

RNA sequencing across all six samples resulted in a total of 109,267,236 paired-
end reads. The trimmed reads underwent de novo assembly individually and a total
of 199,943 transcripts sequences were obtained. A total of 2353 sequences were determined
to be host (E. caballus) when the peptide candidates were blasted against the E. caballus
genome and related flatworm genome (Hymenolepis microstoma). Following removal of
homologous sequences and host contamination, a total of 74,607 remained, with the total
assembled contigs length of 56,913,324 bp and mean ± SD contig length of 763 ± 762 bp.
Summary statistics for the A. perfoliata de novo transcriptome assembly are presented in
Table 1. The assembled transcriptome was converted to protein sequences, using best
predicted coding regions, resulting in 34,341 protein sequences (Table 1).

Table 1. Summary statistics of the trimmed Illumina sequencing, de novo transcriptome assembly
and TransDecoder protein sequences of adult A. perfoliata from naturally infected horses (n = 6).

Illumina RNA Sequencing Trimmed Reads

Total reads (bp) 104,519,050
Mean (SD) reads per sample (bp) 2,903,307 (608,363)

Sequence length (bp) 36–76
GC percentage (%) 46

De Novo Trinity Assembly Assembled Transcript

Total assembled length (bp) 56,913,324
Number of contigs 74,607

Number of contigs (without Isoforms) 26,653
Mean (SD) contig lengths per sample (bp) 763 (762)

Max. contig lengths (bp) 11,266
Min. contig lengths (bp) 201

Contigs N50 1155

TransDecoder Peptide Dataset

Number of protein sequences 34,341

2.2. Transcriptome Functional Annotation and Gene Ontology Terms Analysis

A total of 19,445 (56.6%) sequences were successfully annotated to the top three species
hits to related tapeworm species including Hymenolepis diminuta, Echinococcus granulosus,
and Hymenolepis microstoma. However, Omicsbox functional annotation revealed that
3244 (9.4%) protein sequences could not be annotated. A further 6199 (18.1%) sequences
were annotated with Blast Hits and 5453 (15.9%) with GO term mapping. The majority of
GO terms were classified according to the three main GO categories; biological processes
(33.5%), molecular functions (39.7%), and cellular components (26.8%). The most frequent
GO terms identified by level 3 are demonstrated in Supplementary Figure S1. Protein
descriptions were assigned to 27,950 (81.39%) of the transcript sequences, whereas 6391
(18.61%) sequences were unnamed protein products or uncharacterised proteins; 1738
(5.06%) were of unknown function; 3244 (9.45%) did not have information provided and
1409 (4.10%) were hypothetical proteins/transcripts.

2.3. Transcripts Expression of A. perfoliata Transcriptome

The mean ± SD TPM was 12.4 ± 222, with the top 50 most abundant transcripts sum-
marised in Table 2. Known genes of interest in other platyhelminths were noted amongst the top
50 abundance transcripts, such as, Dynein light chain (IPR037177) superfamily, EF-hand domain
pair (IPR011992), Armadillo-like helical (IPR011989), Armadillo-type fold (IPR016024), and pro-
filin superfamily (IPR036140). Protein families and domains of highly expressed genes related to
these superfamilies were also found, similar to other platyhelminths, such as Dynein light chain,
type 1/2 family (IPR001372), profilin family (IPR005455), EF-hand domain (IPR002048), and
domain of unknown function, DUF5734 (IPR043792). Thus, demonstrating the likely validity of
the transcript dataset for A. perfoliata.
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Table 2. The top 50 most abundant transcripts in A. perfoliata calculated from Salmon and expressed as a TPM value. The
description of each transcript is demonstrated from Omicsbox functional annotation.

Rank Gene ID Length Mean Effective Length Mean Number Reads Mean TPM Description

1 DN10805_c3_g6_i1_11702 1036 858 407,936 46,601 Uncharacterised

2 DN10805_c3_g2_i9_11698 1754 1591 264,055 16,600 Uncharacterised

3 DN6887_c0_g1_i1_76818 384 212 34,703 16,001 Uncharacterised

4 DN8498_c0_g2_i2_20529 333 162 17,101 10,383 Uncharacterised

5 DN14755_c0_g1_i1_41815 314 148 10,387 6916 Uncharacterised

6 DN8064_c0_g1_i1_68336 477 315 13,860 4289 Uncharacterised

7 DN8427_c0_g1_i1_72770 410 234 10,236 4283 Uncharacterised

8 DN7932_c0_g1_i1_6806 401 225 9709 4239 Uncharacterised

9 DN12386_c1_g1_i9_39644 4006 3843 158,692 4199 Transcript antisense to
ribosomal rna protein

10 DN10805_c3_g2_i7_11692 3260 3097 133,004 4199 Uncharacterised

11 DN3788_c0_g1_i1_50567 426 265 10,398 3869 Uncharacterised

12 DN8606_c1_g1_i3_340 314 146 5533 3826 Uncharacterised

13 DN12640_c1_g1_i8_71952 9547 9384 316,400 3293 Uncharacterised

14 DN10987_c0_g1_i3_65072 874 711 23,587 3277 Expressed conserved protein

15 DN5384_c0_g1_i1_75533 414 241 8058 3248 Uncharacterised

16 DN8805_c0_g1_i1_60212 444 283 8962 3129 Uncharacterised

17 DN12068_c0_g3_i1_63804 1028 851 25,275 2996 Expressed conserved protein

18 DN13746_c0_g1_i1_26674 358 199 5871 2919 Uncharacterised

19 DN10069_c0_g1_i3_2055 985 809 21,491 2662 Expressed conserved protein

20 DN11085_c1_g1_i5_42186 381 221 5786 2641 Uncharacterised

21 DN9799_c0_g1_i1_46050 508 346 9173 2617 Dynein light chain 1, cytoplasmic

22 DN118_c0_g1_i1_52814 595 420 10,683 2540 Tegumental protein

23 DN10418_c3_g5_i1_34715 483 311 8002 2501 Immunogenic protein

24 DN6144_c0_g1_i1_49576 641 469 11,504 2425 Dynein light chain type 1 2

25 DN3712_c0_g1_i1_698 602 440 10,689 2400 Dynein light chain 1, putative

26 DN10763_c1_g5_i1_22341 281 128 3136 2298 Uncharacterised

27 DN7817_c0_g1_i1_51569 1013 850 19,568 2191 Expressed conserved protein

28 DN9590_c0_g2_i1_51137 480 318 6844 2115 Uncharacterised

29 DN10367_c0_g1_i3_29401 1522 1347 28,911 2057 Expressed conserved protein

30 DN3791_c0_g1_i1_14014 632 470 9552 2007 Uncharacterised

31 DN4055_c0_g1_i1_61482 518 346 7092 1989 Dynein light chain type 1 2

32 DN6146_c0_g1_i2_38481 514 352 6601 1906 Uncharacterised

33 DN15763_c0_g1_i1_57495 831 668 12,973 1887 Tegumental protein

34 DN10204_c0_g1_i2_51272 516 354 6655 1828 Uncharacterised

35 DN12126_c0_g1_i9_41589 2283 2120 38,789 1826 Uncharacterised

36 DN502_c0_g1_i1_32021 462 284 5326 1809 Uncharacterised

37 DN10922_c1_g1_i5_14239 1292 1129 19,933 1778 Deoxyhypusine hydroxylase

38 DN5442_c0_g1_i1_26423 439 261 4666 1728 Uncharacterised

39 DN5954_c0_g1_i2_54752 370 201 3606 1703 Uncharacterised

40 DN9433_c0_g1_i5_18544 424 251 4344 1674 8 kDa glycoprotein

41 DN12201_c0_g3_i1_43360 334 176 3135 1672 No hit

42 DN11009_c0_g1_i1_3069 711 535 9247 1669 Uncharacterised

43 DN11588_c0_g1_i4_75797 406 245 4072 1669 Uncharacterised

44 DN10667_c1_g1_i2_72481 469 296 5181 1666 Uncharacterised

45 DN5960_c0_g1_i2_30732 274 122 1928 1571 Uncharacterised

46 DN7341_c0_g1_i1_31615 484 322 4974 1532 Dynein light chain 1, cytoplasmic

47 DN1202_c0_g1_i1_62670 642 470 7386 1532 Profilin allergen

48 DN10641_c0_g1_i1_57690 585 423 6391 1528 Uncharacterised

49 DN15681_c0_g1_i1_62555 578 416 6427 1513 Uncharacterised

50 DN9547_c0_g1_i1_1108 381 221 3260 1477 Uncharacterised
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2.4. Bioinformatics of Potential Immune Modulators

An initial A. perfoliata transcriptome analysis by tBLASTn and PFAM was performed
using 73 known immune modulators from helminths. This analysis demonstrated sig-
nificant hits for 43 of the 73 bait immune modulators leading to a total of 454 unique
contigs which were identified as potential immune modulator homologs (cutoff 1 × 10−15)
(Supplementary Table S1). The top five hits, or less is fewer than five hits returned, for
each of the 43 bait proteins returning hits were confirmed as homologs using Pfam domain
searches with over 70% domain conservation and provided a total of 83 unique contigs
confirmed as potential immune modulators.

2.4.1. Characterisation of Novel A. perfoliata Sigma Class GSTs

A total of 4 A. perfoliata sequences were identified by tBLASTn as potential Sigma class
GST protein sequences, homologous to protein sequences of recognised Sigma class GSTs
from mammals and helminths (cutoff 1 × 10−15). Subsequently, InterProScan followed by
manual BLASTp against the NCBI (nr) database confirmed that three of these sequences
were potential Sigma class GST A. perfoliata sequences (GST superfamily IPR040079) rep-
resenting two distinct enzymes (ApGST-S1, ApGST-S2.1, and ApGST-S2.2 where 2.1 and
2.2 share 100% amino-acid sequence identity).

The secondary characteristic structure of multiple aligned A. perfoliata Sigma GST
homolog sequences were predicted, with three β-strands and nine α-helices demonstrating
the consistency of the secondary characteristic structure between ApGST-S1, ApGST-
S2 (2.1 and 2.2), and recognised Sigma class GST sequences (Supplementary Figure S2).
Sigma class GST homologs were investigated based on the GSH-binding sites in the N-
terminal domain such as the catalytic tyrosine residue at the end of the first β-strand
(Tyr8), Phe9, Arg14, Trp39, Lys43, Pro52, and Ser64) and the substrate binding sites in the C-
terminal domain [52–55]. Only ApGST-S2.1 and 2.2 (212 amino acids) contained the highly
conserved tyrosine residue (Tyr8) at the end of the first β-strand and also demonstrated a
high homology to other GSH-binding sites (Supplementary Figure S2).

A maximum likelihood (ML) phylogenetic tree generated from the 3 A. perfoliata
and 16 recognised Sigma class GST sequences demonstrated that ApGST-S1, ApGST-S2.1,
and ApGST-S2.2 were clustered in a Cestode clade, which suggested that all three should
be included in the Sigma class of the GST superfamily (Figure 1). ApGST-S1 clustered
closest to H. microstoma Sigma like GST (accession CDS25704) with a bootstrap value of
52%, and also clustered in the Sigma group of Echinococcus multicularis Sigma like GST
(accession CDS39356) and Echinococcus granulosus isozyme (accession EUB60467) with a
high bootstrap value (100%) (Figure 1).

2.4.2. Characterisation of Novel A. perfoliata Heat Shock Protein 90

A total of nine A. perfoliata sequences were identified by tBLASTn as potential HSP90
protein sequences, homologous to protein sequences of recognised HSP90 family including
alpha and beta isoforms from mammals and helminths (cutoff 1× 10−20). The InterProScan
followed by manual BLASTp against NCBI (nr) database confirmed eight A. perfoliata
sequences as part of the HSP90 protein family (IPR001404) representing five likely distinct
A. perfoliata HSP90s.

The secondary characteristic structure of multiple aligned HSP90 alpha (HSP90α)
A. perfoliata homologous sequences was predicted, with 17 β-strands and 25 α-helices
demonstrating the consistency of the secondary characteristic structure between all eight
novel A. perfoliata and recognised HSP90α sequences (Supplementary Figure S3). Among
the eight novel isoforms of A. perfoliata HSP90α sequences, ApHSP90-4 (743 amino acids)
contained a unique motif; the MEEVD peptide sequence in the C terminal end of cy-
toplasmic HSP90 isoforms, whereas ApHSP90-5.1 (777 amino acids) and ApHSP90-5.2
(575 amino acids) contained KEEL peptide sequence 75% identical to KDEL peptide se-
quence of unique endoplasmic reticulum isoforms (human GRP94) [56]. The cytosolic
HSP90α was investigated based on a signature sequence LIP and EDD peptide sequences



Pathogens 2021, 10, 912 6 of 30

at residues 80–82 and 701–703, respectively [57]. However, all A. perfoliata sequences lacked
this signature as did the additional included cestode sequences.

Figure 1. Maximum likelihood (ML) tree with JTT matrix-based model inferred from A. perfoliata Sigma class GST amino
acid sequences. The bootstrap consensus tree inferred from 1000 replicates. Initial tree(s) for the heuristic search were
obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using a
JTT model, and then selecting the topology with superior log likelihood value. A discrete Gamma distribution was used to
model evolutionary rate differences among sites (five categories (+G, parameter = 4.2179)). This analysis involved 19 amino
acid sequences. There was a total of 279 positions in the final dataset. Evolutionary analyses were conducted in MEGA X.

The analysis of the evolutionary relationships between the 8 A. perfoliata HSP90
and 27 recognised HSP90 protein member sequences demonstrated that there were no A.
perfoliata HSP90 sequence clustered within HSP90 beta (HSP90β) clades (Figure 2). All
eight potential A. perfoliata HSP90 sequences were clustered in a branch of HSP90α into a
Cestode and Trematode specific clade. Of which, ApHSP90-4 was in a HSP90α Cestode
specific clade containing E. granulosus (accession XP_024345770.1 and CDI70178.1) with
good bootstrap support (bootstrap value 97%). The phylogenetic analysis suggests five
A. perfoliata HSP90s of which ApHSP90-1.1 to 2.2 and ApHSP90-3 were clustered into a
Cestode specific clade of three recognised HSP90 H. microstoma (accession CDS28179.1),
E. granulosus (accession CDS25067.1), and E. multilocularis (accession CDS39694.1) with
good bootstrap support (Bootstrap value 75%) (Figure 2).

2.4.3. Characterisation of Novel A. perfoliata Alpha-Enolase

A total of five A. perfoliata sequences were identified by tBLASTn as potential alpha-
Enolase (α-Enolase) protein sequences, homologous to protein sequences of recognised
α-Enolase from mammals and helminths (cutoff 1 × 10−15). Subsequently, InterProScan
followed by manual BLASTp against the NCBI (nr) database confirmed that five of these se-
quences were potential α-Enolase A. perfoliata sequences (Enolase superfamily IPR000941).
There were three A. perfoliata α-Enolase enzymes that retained all catalytic residues and,
therefore, likely to be catalytically functional, whilst the remaining two sequences repre-
sented likely incomplete fragments.



Pathogens 2021, 10, 912 7 of 30

Figure 2. The phylogenetic tree of A. perfoilata Heat Shock Protein 90 inferred by using Maximum likelihood (ML) method
and JTT matrix-based model. The bootstrap consensus tree inferred from 1000 replicates. The tree with the highest log
likelihood (-16485.50) is shown. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join
and BioNJ algorithms to a matrix of pairwise distances estimated using a JTT model, and then selecting the topology with
superior log likelihood value. A discrete Gamma distribution was used to model evolutionary rate differences among
sites (five categories (+G, parameter = 1.4964)). This analysis involved 35 amino acid sequences. There was a total of 885
positions in the final dataset. Evolutionary analyses were conducted in MEGA X.

The secondary characteristic structure of the three full length α-Enolase A. perfoli-
ata homologous sequences were predicted. All three α-Enolase A. perfoliata sequences;
Apα-Enolase-1 (433 amino acids), 2 (456 amino acids) and 3 (456 amino acids) showed
comparable numbers of β-strands and α-helices when compared to human α-Enolase
(11 β-strands and 16 α-helices) demonstrating the consistency of the secondary characteris-
tic structure between the three novel α-Enolase from A. perfoliata and recognised α-Enolase
sequences (Supplementary Figure S4). All three α-Enolase A. perfoliata sequences and
recognised α-Enolase sequences conserved amino acid residues imperative for proper
catalytic function (His158, Glu167, Glu210, Lys343, Lys394, respective positions in human
α-Enolase) [58].
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The analysis of the evolutionary relationships between all 3 A. perfoliata α-Enolase and
14 recognised α-Enolase protein member sequences demonstrated that all 3 A. perfoliata
α-Enolase sequences (Apα-Enolase-1, -2, and -3) clustered in a Cestode specific clade con-
taining H. microstoma α-Enolase sequence (accession CDS26422 and CDS30005), T. solium
(accession AHB59732), E. multilocularis (accession CDS37852), and E. granulosus (accession
ACY30465) with good bootstrap support (Figure 3).

Figure 3. Maximum likelihood (ML) tree with JTT matrix-based model inferred from A. perfoliata α-Enolase amino acid
sequences. The bootstrap consensus tree inferred from 1000 replicates. Initial tree(s) for the heuristic search were obtained
automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using a JTT
model, and then selecting the topology with superior log likelihood value. A discrete Gamma distribution was used to
model evolutionary rate differences among sites (five categories (+G, parameter = 0.4274)). This analysis involved 19 amino
acid sequences. There were a total of 597 positions in the final dataset. Evolutionary analyses were conducted in MEGA X.

2.5. Morphological Characterisation and Size Distribution of A. perfoliata EVs

Both transmission electron microscopy (TEM) and nanoparticle tracking analysis
(NTA) confirmed that A. perfoliata secreted EVs during in vitro maintenance (Figure 4a).
TEM analysis demonstrated the morphological characteristics of size exclusion chromatog-
raphy (SEC) purified A. perfoliata EVs were in a spherical shaped (cup-shaped) membrane
surrounded by a phospholipid bilayer structure (Figure 4a). The proportion of the size dis-
tribution of SEC purified A. perfoliata exosome (30–100 nm) and microvesicles (100–1000 nm)
determined by TEM was 86% and 14%, respectively (Figure 4b). NTA demonstrated that
the majority of the EV population were found to be 67–213 nm (Figure 4c), with a mean
concentration of 1.57 × 109 EV particles/mL (Table 3). The mean estimated particle size
(mean ± SD) of SEC purified A. perfoliata EVs (three replicates) measured by TEM and
NTA were approximately 64.16 ± 28.50 nm (n = 200) and 199.1 ± 108.7 nm in diameter,
respectively. TEM showed the greatest EV size was 214.57 nm whereas and the smallest EVs
size was 30.17 nm in diameter. The summary statistics of NTA of SEC purified A. perfoliata
EVs at 1:600 dilution (n = 3) are shown in Table 3.
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Figure 4. Characterisation of the in vitro maintenance A. perfoliata extracellular vesicles (EVs) by transmission electron
microscopy (TEM) and nanoparticle tracking analysis (NTA): (a) The TEM image from purified A. perfoliata derived EVs
at 80 kV; scale bar is 200 nm; demonstrates that A. perfoliata secreted extracellular vesicles (blue arrows). A. perfoliata EV
morphology is in a spherical shaped membrane surrounded by a phospholipid bilayer structure; (b) A mean size distribution
of the isolated size exclusion chromatography (SEC) purified A. perfoliata EVs (mean ± SE; 200 EVs per replicates; n = 3).
The number of exosomes is shown in the size range of 30–100 nm (86%) and microvesicles in the size range of 100–1000 nm
(14%); (c) Representative histogram showing the EV particle size distribution and average finite track length adjustment
(FTLA) concentration (EVs × 107/mL vs size in nm) of SEC purified A. perfoliata EVs at 1:600 dilution with main peaks
at approximately 67–213 nm determined by nanoparticle tracking analysis. Averaged FTLA concentration, as red areas,
specify the standard deviation (SD) between measurements and blue numbers indicate the maxima of individual peaks.

Table 3. Summary statistics of nano-particle tracking analysis of size exclusion chromatography
purified Anoplocephala perfoliata EVs.

Parameters Mean EV ± SE

Mean (nm) 199.1 ± 5.3
Mode (nm) 144.7 ± 7.5

SD (nm) 108.7 ± 8.5
D10 (nm) 105.9 ± 2.6
D50 (nm) 168.3 ± 4.6
D90 (nm) 337.9 ± 14.7

Concentration (particles/mL) 9.42 × 1011 ± 7.20 × 1011

Concentration (particles/frame) 1:600 dilution 81.2 ± 6.1
Concentration (centres/frame) 1:600 dilution 116.1 ± 7.1

2.6. Protein Profiling of A. perfoliata Proteomics Datasets

Three biological replicates of both whole EVs and EV depleted ESP produced similar
patterns of protein bands for each separate sample demonstrating the similarity amongst
biological replicates. Protein bands in A. perfoliata EV depleted ESP demonstrated more
frequent and dense proteins on 1D SDS-PAGE gels compared to the whole EVs (Supple-
mentary Figure S5).

The resulting three A. perfoliata mass spectrometry datasets including whole EVs, EV
surface and EV depleted ESP were analysed through MASCOT via MS/MS Ion Search
against the A. perfoliata transcriptome for protein identification. The full list of proteins iden-
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tified in each A. perfoliata proteomics datasets is available in Supplementary Tables S2–S4.
A total of 315 proteins were identified from A. perfoliata whole EVs, 301 proteins from the
EV surface and 596 proteins from EV deleted ESP (Figure 5).

Figure 5. Venn diagrams comparing the proteins identified in Anoplocephala perfoliata whole extracel-
lular vesicle (EVs), extracellular vesicle (EV) surface, and extracellular vesicle depleted excretory-
secretory products (EV depleted ESP) retrieved from mass spectrometry analysis and MASCOT via
MS/MS Ion Search against the A. perfoliata transcriptome.

A total of 107 proteins were common between all three proteomics datasets (Figure 5),
with the most abundant proteins in all datasets being WD repeat and FYVE domain-
containing protein 3 (Tables 4–6). A total of 142 identified proteins were common between
whole EVs and the EV surface with a total of 474 proteins identified in or on EVs. Well-
known identified EV markers of interest as defined by the Exocarta database [59,60] and
Vesiclepedia data [61] in A. perfoliata EV and EV surface proteomics datasets were noted
amongst the top 50 most abundant proteins, such as, annexin, actin, myosin, enolase,
phosphoglycerate kinase, heat shock 70 kDa protein, molecular chaperone HtpG, and
programmed cell death 6-interacting protein (Tables 4 and 5). On the surface of A. perfoliata
EVs, protein pumps and transporters were identified such as ATP binding cassette sub-
family B (MDR:TAP), multidrug resistance protein, V type proton ATPase 116 kDa subunit
A, plasma membrane calcium-transporting ATPase 3 and solute carrier family 5 (Table 5).
Key secretory proteins linked to the host–parasite interface such as enolase and calpain
were identified in the top 50 most abundant of A. perfoliata EV depleted ESP (Table 6).

The 454 putative immune modulator sequences that were identified in the transcript
were also assessed in the A. perfoliata proteomics data, with a total of 49 identified as
expressed proteins across all three datasets, including 22 expressed in EVs, 16 on the EV
surface and 40 in the EV depleted ESP (Supplementary Tables S2–S4). Of note, only a single
Sigma class GST was identified across the proteomic datasets. ApGST-S1 was identified
within the EV depleted ESP proteomic dataset and relatively low abundance. When
assessing the proteomics datasets for HSP90 and α-Enolase, one HSP90 (ApHSP90-4) and
two α-Enolase (Apα-Enolase-1 and 2) were observed across all three proteomic datasets
analysed; namely whole EVs, EV surface proteins and EV depleted ESP. ApHSP90-4 and
Apα-Enolase-1 were extremely abundant in the analysis featuring in the top 30 of all three
datasets (27th and 23rd in whole EVs, 30th and 24th on the EV surface and 29th and 3rd in
the ESP, respectively; Tables 4–6). Additionally, Apα-Enolase-2 was identified within the
EV depleted ESP proteomic dataset at very low abundance.
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Table 4. The top 50 most abundant proteins putatively identified in A. perfoliata EVs proteomics dataset by 1D SDS-PAGE,
LC MS/MS (GeLC) and a MASCOT search at the significance threshold score above 48. Protein descriptions were given
from Omicsbox. Protein hits shaded in grey represent known helminth released immune modulators, as also identified in
the A. perfoliata transcriptome.

No. Protein Description Sequence ID Number of
Sequenced Peptides MASCOT Score

1 WD repeat and FYVE
domain-containing protein 3 DN11838_c0_g1_i2_56054 78 1933

2 Actin, cytoplasmic type 5 DN10334_c0_g1_i3_17117 41 958

3 Myosin XV DN10026_c0_g1_i2_27828 36 346

4 Myosin heavy chain 10 or
non-muscle myosin IIB DN10438_c0_g2_i2_34624 34 1235

5 Leucine-rich repeat-containing protein DN11834_c0_g1_i11_56034 30 611

6 Otoferlin DN10250_c0_g1_i1_26991 29 245

7 Fascin 2 DN10161_c0_g1_i1_59685 29 599
8 Calpain A DN9786_c0_g1_i1_72692 27 1113
9 Annexin A7 DN8700_c0_g1_i1_600 26 747

10 Phosphoenolpyruvate carboxykinase DN11364_c0_g2_i1_39228 25 691

11 Actin, cytoplasmic type 5 DN10334_c0_g1_i1_17115 24 865

12 Heat shock 70 kDa protein 4 DN12581_c0_g1_i2_73130 23 440

13 Expressed conserved protein DN11921_c1_g2_i1_46303 22 400

14 Von Willebrand factor A
domain containing protein DN11931_c2_g1_i10_58523 22 396

15 Expressed conserved protein DN7822_c0_g2_i1_27391 22 131

16 Annexin A7 DN7793_c0_g1_i1_23754 21 321

17 Aldo keto reductase family 1-member B4 DN11165_c0_g1_i1_24177 21 416

18 Expressed conserved protein DN10367_c0_g1_i3_29401 21 473

19 Solute carrier family 5 DN12278_c0_g6_i1_68615 20 642

20 Tegumental antigen DN5781_c0_g1_i1_2927 20 674

21 Programmed cell death 6-
interacting protein DN10491_c0_g3_i2_21343 19 303

22 Peroxidasin DN10163_c0_g1_i1_35077 18 419

23 Enolase DN14469_c0_g1_i1_24672
(Apα-Enolase-1) 18 447

24 Ubiquitin-60S ribosomal protein L40 DN12547_c0_g1_i1_46361 18 335

25 Annexin A13 (Annexin XIII) DN9930_c0_g1_i1_67885 17 1023

26 Tegumental protein DN15763_c0_g1_i1_57495 17 260

27 Molecular chaperone HtpG/Heat shock protein 90 alpha DN11960_c0_g1_i1_46290
(ApHSP90-4) 16 239

28 Expressed conserved protein DN8957_c0_g1_i1_66134 16 299
29 Glycoprotein Antigen 5 DN9013_c0_g1_i2_47406 16 476
30 Annexin A13 (Annexin XIII) DN12676_c0_g1_i9_72045 15 480

31 Alpha 2 macroglobulin DN12789_c0_g1_i5_70580 15 293

32 Phosphoglycerate kinase DN11218_c0_g1_i1_75075 14 338

33 Annexin B9-like isoform X1 DN11220_c0_g1_i12_22997 14 650

34 Non-lysosomal glucosylceramidase DN9975_c0_g1_i9_4448 14 274

35 Solute carrier family 5 DN10836_c0_g1_i4_11677 14 600

36 Basement membrane-specific heparan
sulfate proteoglycan core protein DN9818_c0_g2_i1_37822 14 237

37 Tegumental protein DN118_c0_g1_i1_52814 14 417

38 H17g protein tegumental antigen DN11977_c0_g1_i2_72857 14 357

39 Hypothetical transcript DN9865_c0_g1_i1_63028 14 594

40 Cytosolic malate dehydrogenase DN10181_c0_g1_i1_47181 13 139

41 Putative anoctamin DN11493_c0_g1_i2_56859 13 145

42 Plasma membrane calcium-
transporting ATPase 3 DN11817_c3_g5_i1_69816 13 234

43 Uncharacterised DN6547_c0_g1_i3_66219 13 250

44 Annexin A13 (Annexin XIII) DN12676_c0_g1_i5_72043 13 547

45 Von Willebrand factor A
domain containing protein DN10879_c1_g1_i8_12057 13 381
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46 Annexin A4-like DN12342_c0_g1_i2_39792 13 824

47 Carbonic anhydrase DN11803_c0_g3_i1_69783 13 255

48 Annexin A7 DN11263_c0_g1_i4_60744 12 320
49 Calpain DN4288_c0_g1_i1_31793 12 321
50 Unnamed protein product, partial DN11248_c0_g2_i1_22893 12 267

Table 5. The top 50 most abundant proteins putatively identified on the A. Perfoliata EV surface proteomic dataset by
gel-free LC MS/MS and a MASCOT search at the significance threshold score above 47. Protein descriptions were given
from Omicsbox. Protein hits shaded in grey represent known helminth released immune modulators, as also identified in
the A. perfoliata transcriptome.

No. Protein Description Sequence ID Number of
Sequenced Peptides MASCOT Score

1 WD repeat and FYVE domain-containing protein 3 DN11838_c0_g1_i2_56054 72 1302

2 Expressed conserved protein DN10367_c0_g1_i3_29401 50 1039

3 Myosin heavy chain 10 or non-muscle myosin IIB DN10438_c0_g2_i2_34624 50 1372

4 P29 DN11822_c0_g2_i2_55872 44 1617

5 Basement membrane-specific heparan
sulfate proteoglycan core protein DN9818_c0_g2_i1_37822 44 470

6 Spectrin alpha chain DN11694_c0_g1_i1_54338 37 686

7 Expressed conserved protein DN11921_c1_g2_i1_46303 37 701

8 Myosin XV DN10026_c0_g1_i2_27828 34 296

9 Collagen alpha-2(I) chain DN6173_c0_g1_i4_63619 33 759

10 Expressed conserved protein DN7822_c0_g2_i1_27391 32 114

11 Expressed conserved protein DN10746_c0_g1_i6_22331 31 841

12 Annexin A7 DN8700_c0_g1_i1_600 30 1130

13 Leucine-rich repeat-containing protein DN11834_c0_g1_i3_56030 29 596

14 Annexin A13 (Annexin XIII) DN9930_c0_g1_i1_67885 29 1313

15 Microtubule actin cross linking factor 1 DN10747_c0_g1_i5_35870 28 231

16 Peroxidasin DN10163_c0_g1_i1_35077 28 393

17 Spectrin alpha actinin DN11195_c0_g3_i1_24267 28 231

18 Myosin heavy chain DN11757_c0_g1_i1_61366 28 613

19 Heat shock 70 kDa protein 4 DN12581_c0_g1_i2_73130 27 634
20 Calpain A DN9786_c0_g1_i1_72692 26 931
21 Expressed conserved protein DN11614_c0_g2_i3_53973 24 338

22 Plasma membrane calcium-transporting ATPase 3 DN10463_c3_g1_i2_34420 23 329

23 Von Willebrand factor A domain containing protein DN10879_c1_g1_i8_12057 23 310

24 Enolase DN14469_c0_g1_i1_24672
(Apα-Enolase-1) 23 474

25 Calpain DN4288_c0_g1_i1_31793 23 333

26 Galectin carbohydrate recognition domain DN6894_c0_g1_i2_12735 21 631

27 Tegumental antigen DN5781_c0_g1_i1_2927 21 1112

28 No hit DN10801_c0_g1_i14_11633 20 594

29 Phosphoenolpyruvate carboxykinase DN11364_c0_g2_i1_39228 20 253

30 Molecular chaperone HtpG/Heat shock protein 90 alpha DN11960_c0_g1_i1_46290
(ApHSP90-4) 20 372

31 Annexin A7 DN7793_c0_g1_i1_23754 20 336
32 Glycoprotein Antigen 5 DN9013_c0_g1_i2_47406 20 458
33 Annexin A7 DN11263_c0_g1_i4_60744 20 355

34 H17g protein tegumental antigen DN11977_c0_g1_i2_72857 19 470

35 Programmed cell death 6-interacting protein DN10491_c0_g3_i2_21343 19 645

36 Expressed conserved protein DN12262_c0_g1_i1_68587 18 203

37 Actin modulator protein DN8972_c0_g1_i1_2323 17 395

38 Otoferlin DN10250_c0_g1_i1_26991 17 527

39 Ornithine aminotransferase DN9481_c0_g1_i1_55273 17 289
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40 Unnamed protein product DN12187_c0_g1_i1_66436 17 335

41 Fascin 2 DN10161_c0_g1_i1_59685 16 535

42 Actin, cytoplasmic type 5 DN10334_c0_g1_i3_17117 16 570

43 Calmodulin DN5211_c0_g1_i2_35332 16 381

44 Expressed conserved protein DN8957_c0_g1_i1_66134 16 681

45 Paramyosin DN10354_c0_g1_i1_3720 15 299

46 Serine/threonine kinase DN8156_c0_g1_i2_52113 15 212

47 Protein kinase C and casein kinase
substrate in neurons protein 1 DN7152_c0_g1_i2_8970 15 456

48 Tegumental protein DN118_c0_g1_i1_52814 14 205

49 Lysyl oxidase DN7852_c0_g1_i1_1626 14 189

50 Phosphoglycerate kinase DN11218_c0_g1_i1_75075 14 123

Table 6. The top 50 most abundant proteins putatively identified in A. perfoliata EV depleted ESP proteomic datasets by 1D
SDS-PAGE, LC MS/MS, and a MASCOT search at the significance threshold score above 48. Protein descriptions were given
from Omicsbox. Protein hits shaded in grey represent known helminth released immune modulators, as also identified in
the A. perfoliata transcriptome.

No. Protein Description Sequence ID Number of
Sequenced Peptides MASCOT Score

1 WD repeat and FYVE domain-containing protein 3 DN11838_c0_g1_i2_56054 292 6943

2 Basement membrane-specific heparan
sulfate proteoglycan core protein DN9818_c0_g2_i1_37822 169 2575

3 Enolase DN14469_c0_g1_i1_24672
(Apα-Enolase-1) 146 5177

4 Alpha 2 macroglobulin DN12789_c0_g1_i5_70580 118 2655

5 Ornithine aminotransferase DN9481_c0_g1_i1_55273 106 2044

6 Aldo keto reductase family 1-member B4 DN10754_c1_g2_i7_35857 96 3057

7 Deoxyhypusine hydroxylase DN10922_c1_g1_i5_14239 95 1993

8 Protein disulfide-isomerase DN9431_c0_g1_i1_5402 91 3042

9 Peroxidasin DN10163_c0_g1_i1_35077 89 2110

10 Cytosolic malate dehydrogenase DN10181_c0_g1_i1_47181 75 1053

11 Heat shock 70 kDa protein 4 DN12581_c0_g1_i2_73130 74 1512

12 Actin, cytoplasmic type 5 DN10334_c0_g1_i3_17117 68 1765

13 Glycogen phosphorylase DN9054_c0_g2_i1_35634 63 865

14 Fascin 2 DN10161_c0_g1_i1_59685 62 952

15 Lysosomal alpha-glucosidase DN10704_c0_g1_i4_9857 60 932

16 Gynecophoral canal protein DN2510_c0_g1_i1_41860 59 991

17 Phosphoenolpyruvate carboxykinase DN11364_c0_g2_i1_39228 57 1088

18 Protein disulfide-isomerase A3 DN6375_c0_g1_i1_15550 55 1134

19 Von Willebrand factor A domain containing protein DN10879_c1_g1_i8_12057 53 1406
20 Calpain A DN9786_c0_g1_i1_72692 52 1568
21 Spectrin alpha chain DN11694_c0_g1_i1_54338 50 513

22 Putative zinc binding dehydrogenase DN10593_c0_g1_i11_28936 50 1031

23 Phosphoglycerate kinase DN11218_c0_g1_i1_75075 50 958

24 Fructose-bisphosphate aldolase DN10221_c0_g1_i1_65390 46 909

25 NADP-dependent malic enzyme DN8932_c0_g1_i2_2337 45 1210

26 Actin modulator protein DN8953_c0_g1_i6_52210 45 977

27 EF hand family protein DN9944_c0_g2_i4_42845 42 1195

28 Expressed conserved protein DN11614_c0_g2_i3_53973 41 201

29 Molecular chaperone HtpG/
Heat shock protein 90 alpha

DN11960_c0_g1_i1_46290
(ApHSP90-4) 41 801

30 Spectrin alpha actinin DN11195_c0_g3_i1_24267 40 467

31 Basement membrane-specific heparan
sulfate proteoglycan core protein DN9714_c0_g1_i3_20481 40 770

32 Beta galactosidase DN10618_c0_g1_i1_32785 39 752
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33 Transketolase DN9107_c0_g1_i1_32351 39 985

34 Glucose-6-phosphate isomerase DN10660_c0_g1_i2_45795 38 709

35 Puromycin sensitive aminopeptidase DN10270_c0_g1_i2_26817 37 706

36 Calsyntenin 1 DN10458_c0_g1_i1_34309 37 638

37 Gynecophoral canal protein DN7995_c0_g1_i1_6847 37 653

38 Glycerol kinase DN8664_c0_g1_i1_13160 37 1104

39 Peptidyl-glycine alpha-amidating monooxygenase A DN8251_c0_g1_i1_16141 36 725

40 Hypothetical transcript DN9865_c0_g1_i1_63028 36 642

41 Adenylosuccinate synthetase DN10697_c0_g3_i1_6876 36 810

42 Glucose-6-phosphate 1-dehydrogenase DN11811_c2_g4_i1_55908 35 1378

43 Myosin heavy chain 10 or non-muscle myosin IIB DN12309_c0_g1_i3_64783 35 70

44 Expressed conserved protein DN11119_c0_g1_i2_24053 34 662

45 Putative actin-interacting protein 1 DN1602_c0_g1_i1_69974 34 218

46 Expressed conserved protein DN7822_c0_g2_i1_27391 34 595

47 Puromycin sensitive aminopeptidase DN10270_c0_g1_i1_26816 33 488

48 Phosphoglucomutase DN12341_c1_g3_i1_64791 33 449

49 Ubiquitin modifier activating enzyme 1 DN11247_c1_g1_i4_75101 33 784

50 Peptidyl prolyl cis trans isomerase B DN4872_c0_g1_i1_43079 32 202

2.7. Gene Ontology Enrichment Analysis

A total of 173 GO terms were not propagated up the hierarchy (p < 0.05 identified
significance), of which 45, 42, and 86 GO terms were enriched in whole EVs, the EV sur-
face and EV depleted ESP, respectively. The comparison of GO term enrichment from
all three proteomics datasets is presented in Supplementary Figure S6. A total of 20 GO
terms were enriched across all secretome proteomic datasets, with most GO terms be-
ing in the biological processes group, of which calcium ion binding was found to be
the most enriched, followed by Arp2/3 complex-mediated actin nucleation, microtubule-
based process and gluconeogenesis. Seven GO terms enriched in EV samples only were
all categorised in biological processes, with carbohydrate transmembrane transport be-
ing the most enriched followed by transmembrane transport, inorganic anion transport,
peptidyl-lysine modification to peptidyl-hypusine, calcium-mediated signaling, protein
phosphorylation, and protein processing. In the EV surface protein samples, the three
most enriched GO terms were categorised in biological processes including bile acid and
bile salt transport, seryl-tRNA aminoacylation and urea cycle whereas the three enriched
GO terms categorised in cellular component categories included membrane, virion, and
nascent polypeptide-associated complex. The top five most enriched GO terms in EV
depleted ESP were categorised in biological processes included carbohydrate metabolic
process, formaldehyde catabolic process, negative regulation of endopeptidase activity,
proteolysis involved in cellular protein catabolic process and proteolysis.

3. Discussion

The equine tapeworm, A. perfoliata, remains a research neglected parasite with limited
molecular information available and as such, a lack of understanding of the host–parasite
interaction. Our study employed a polyomic approach to characterise adult A. perfoliata,
generating a transcriptome of the whole worm and proteomic maps of the secretome. To
our knowledge, the present study is the first to generate a de novo transcriptome assembly
of this adult equine tapeworm. Moreover, we also present the first evidence that the
secretome of an equine helminth parasite generates EVs, which are filled with a plethora of
immune-modulatory proteins that have previously been suggested as regulators of host
immune responses.

The top 50 most highly represented transcripts demonstrate the expression of common
conserved genes similar to other closely related cestodes at several life stages—such as
dynein light chain, tegumental protein, deoxyhypusine hydroxylase, 8 kDa glycoprotein,
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and expressed conserved protein—thus demonstrating the validity of the transcript as-
sembly [62–68]. Moreover, the A. perfoliata transcriptome aligned well to 3 closely related
tapeworm species, namely H. diminuta, E. granulosus, and H. microstoma, again confirming
the validity of the dataset.

The development of the first transcriptome for A. perfoliata provides support to explore
key proteins of importance linked to the host–parasite interface as has been demonstrated
previously for other helminths [19,21,27,69]. At the host–parasite interface immune modula-
tion is imperative for parasite survival [70,71] and consequently many immune modulatory
proteins have been identified in platyhelminth species [40,45,49]. The current transcriptome
and proteomic analysis has identified 454 transcripts as homologues of recognised immune
modulators in other helminth species of which several are functionally expressed given
their presence as part of the secretome. Notable immune modulators were identified in
the top 50 most abundant proteins, such as sigma class GST (EV depleted ESP), enolase
(EVs, EV surface and EV depleted ESP), calpain A (EVs, EV surface, and EV depleted ESP),
and HSP90α (EVs, EV surface and EV depleted ESP). Thus, we have demonstrated the
potential for an immune modulatory role of the A. perfoliata secretome that may have wide
ranging effects on the host immune response to the parasite. The functionality of these
putative immune modulators now needs further investigation.

The parasite secretome during infection is known to have an essential role in host–
parasite interactions [16,26–34,41,72]. Our study establishes for the first time the A. perfoliata
secretome; including proteomic analysis of in vitro secreted EVs purified through SEC, the
EV surface and EV depleted ESP. We report identification of a total of 315 proteins from A.
perfoliata whole EVs, 301 proteins from the EV surface and a further 596 proteins from EV
deleted ESP. The majority of GO terms were enriched in the biological processes group,
however, calcium ion binding in the molecular category was found to be the most enriched
across all secretome samples, a process involved in EV biogenesis [73–75].

Many key secretory proteins such as GSTs, HSP90 and Enolase were secreted by
A. perfoliata as free proteins (EV depleted ESP) during in vitro maintenance in the current
study, which shows similarity to other cestodes [25,28,76,77]. Interestingly, enolase, which
is described as a multifunctional protein and essential in the host immune system evasion
through immunomodulation, was observed as the third-most-abundant protein in A. perfoli-
ata EV depleted ESP. Likewise, enolase was found as the most abundant in E. granulosus [76]
and Taenia solium ESP [25]. In addition, proteins identified in H. diminuta ESP, like per-
oxidasin, expressed conserved protein, NADP-dependent malic enzyme, deoxyhypusine
hydroxylase, and particularly, basement membrane-specific heparan sulfate proteoglycan
core protein, were also present in the 50 most abundant proteins in A. perfoliata EV depleted
ESP [28].

We also confirmed for the first time that equine tapeworms, A. perfoliata, release whole
EVs as part of the ESP, during in vitro maintenance, determined via TEM and NTA analysis.
Both size and morphology of A. perfoliata whole EVs were similar to EVs released from other
tapeworms in a spherical shaped or cup-shaped membrane surrounded by a phospholipid
bilayer structure with sizes ranging from 30 to 200 nm in diameter [38–44]. The protein
profile of A. perfoliata EVs also demonstrated a number of common EV markers in the
top 50 abundant proteins, which have been reported in Exocarta, Vesiclepedia, and from
other cestodes [38,43]. Furthermore, proteins such as H17 tegumental antigen, tegumental
antigen, and tegumental protein, which were found in abundance in A. perfoliata, have
been suggested as typical components in EVs from parasitic flatworms such as Hymenolepis
diminuta [38], Echinococcus granulosus [41], and Calicophoron daubneyi [49].

The outer surface proteins of parasite derived EVs have crucial roles in establishing
cell to cell communication, mediating cellular uptake, affecting immune recognition, and
representing effector molecules [78]. The surface proteins of EVs from trematodes have been
characterised for several species [47,49,79], but this is the first study to provide a proteome
profile for the EV surface of a cestode species. Surface hydrolysis and gel free proteomics
led to the identification of 301 surface proteins of A. perfoliata EVs, including many well-
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known EVs markers, which have been identified in other platyhelminths [47,49]. CD63
antigen, known as part of the tetraspanin family, is mainly associated with membranes
of intracellular vesicles [80] and was identified on the A. perfoliata EV surface, although
not in the top 50 most abundant proteins. Interestingly, Cathepsins (B, D, and L) which
are commonly found on the surface of trematode EVs [47,49] were not observed on the
A. perfoliata EV surface, perhaps reflecting the relative importance of parasite digestive
tract secretions, that are absent from cestodes [81].

Glycolytic process and phosphorylation enzymes such as phosphoenolpyruvate car-
boxykinase, phosphoglycerate kinase, glyceraldehyde-3-phosphate dehydrogenase, and
glucose 6 phosphate were also identified on the surface of A. perfoliata which are crucial en-
zyme activities providing a source of energy for helminths [82,83] and likely reflect the EV
site of origin from the cestode tegument given A. perfoliata lack a digestive tract [81]. Glyco-
gen or glucose, although sporadically available in the caecum, are likely an easy source
of energy in the host’s gut which are absorbed directly through their tegument [83,84].
Additionally, membrane transport proteins on the surface of A. perfoliata EVs such as solute
carrier family 5, plasma membrane calcium-transporting ATPase 3, band 3 anion transport
protein particularly the pumps protein; ATP binding cassette subfamily B (MDR:TAP)
and multidrug resistance protein were observed on the A. perfoliata EV surface similar to
F. hepatica EVs [47]. These transport enzyme activities are likely to enhance the carbohy-
drate metabolism mechanisms in or between cells providing more nutrients and energy
uptake to A. perfoliata.

The transcriptomics and proteomics analysis of A. perfoliata demonstrates the variety
of key proteins that are relevant to the parasite–host interaction. We therefore further inves-
tigated three novel proteins using the transcriptome that have previously been identified as
immunomodulators, namely Sigma class GSTs, HSP90α, and enolase to better understand
the relationship of these proteins in A. perfoliata to those identified in other platyhelminths.

Sigma class GSTs have well established multi-functional roles in the host–parasite
interaction, including general detoxification of xenobiotic and endogenously derived toxins
and prostaglandin synthase activity and as such have been suggested as vaccine candidates
within Fasciola [85–87] and Schistosoma [88–94]. We have identified two novel A. perfoliata
Sigma class GSTs (ApGST-S1, GST-S2.1, and GST-S2.2) within the A. perfoliata transcriptome,
confirmed by secondary structure assessment, domain analysis, and phylogenetic analysis.
Furthermore, a likely functional expressed protein of ApGST-S1 was also identified in the
EV depleted ESP and was initially given the protein description as AChain A, Glutathione
S-transferase 28 Kda (GST class-Mu 28 kDa isozyme) following Omicsbox classification.
However, domain analysis and phylogenetic analysis demonstrated that ApGST-S1 is likely
be a Sigma-like GST. All A. perfoliata Sigma class GSTs were clustered well in the Sigma class
GST clade, specifically as part of a cestode group. Moreover, the secondary characteristic
structure prediction demonstrated the consistency and similarity with other cestodes and
trematodes of the β-strand, α-helix, and random coils structures within the recognised
Sigma class GST sequences, which are conserved regions of these proteins. Interestingly,
the catalytic tyrosine residues (Y) positioned at the end of the first β-strand, which has
been suggested as the key feature of the GSH binding site of the sigma class GST [52–55],
was present in ApGST-S2.1 and S2.2 but missing in ApGST-S1 which was replaced with a
histidine residue. However, ApGST-S1 demonstrates similarity to H. microstoma Sigma-like
GST (Hmic; accession CDS25704) at this residue and was consequently clustered alongside
this H. microstoma Sigma-like GST in the phylogenetic tree (bootstrap value 52%). Therefore,
ApGST-S1 is likely be a Sigma-like GST with ApGST-S2.1 and S2.2 representing true Sigma
class GSTs. However, given its secretion and alternative active site residue, ApGST-S1 may
preferentially function as an immune modulator.

α-Enolase, also known as phosphopyruvate hydratase, is a glycolytic enzyme respon-
sible for converting 2-phosphoglycerate (2-PG) into phosphoenolpyruvate (PEP) in the
penultimate step of glycolysis [95]. Additionally, α-Enolase is also considered a multi-
functional protein due to acting as a plasminogen receptor and concentrating proteolytic
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plasmin activity on the cell surface [96]. Functional characterisations of the Onchocerca
volvulus α-Enolase has suggested that this enzyme possesses immunomodulatory proper-
ties due to its ability to bind to plasminogen and promote plasmin-mediated proteolysis,
which subsequently leads to the degradation of the host’s extracellular matrix [37,97]. In
total, three full length novel α-Enolases were identified (Apα-Enolase-1, 2, and 3) when
exploring the A. perfoliata transcriptome with the potential of two further isoforms that
were currently represented by small fragments. Following phylogenetic analysis, all three
novel Apα-enolases were clustered well in the α-enolase clade, specifically as part of a
cestode group. Assessing primary amino acid sequence of the translated contig hits showed
Apα-enolase-1, -2, and -3 to conserve all five active site amino acid residues (His158, Glu167,
Glu210, Lys343, Lys394, respective positions in human α-enolase), suggesting these α-enolase
A. perfoliata proteins would exhibit similar enzymatic activity properties commonly associ-
ated with previously characterised α-enolase proteins [58]. Apα-enolase-1, -2, and -3 also
possessed similar secondary structure positioning when compared to human α-enolase
(11 β-strands and 16 α-helices), which further supports the previous hypothesis. From
the proteomic datasets, only Apα-enolase-1 was expressed in EVs, on the EV surface and
in EV depleted ESP, Apα-enolase-2 was expressed in EV depleted ESP, suggesting key
roles in host invasion/interaction. To this end, Apα-Enolase-1, -2, and -3 are confirmed
to be likely functional Apα-enolase. However, the two Apα-enolase fragments lacked the
five catalytic active-site residues and comparable secondary structure patterning, which
suggests enzymatic activity is not conserved in these two Apα-enolase proteins and thus
further investigation is required to confirm their enzymatic activity and full transcripts.

HSP90 is a molecular chaperone and a highly conserved protein involved in signal
transduction, cell cycle control, stress management and folding, degradation, and transport
of proteins [98–104]. Furthermore, HSP90 has also been thought to be involved in host
immune system modulation via platyhelminth secretomes [50,105], although information
on the role of HSP90 as an immune modulator in helminth infections is less extensive
than that presented for sigma class GSTs and enolase. In exploring the A. perfoliata tran-
scriptome, five novel HSP90s were identified (ApHSP90-1 [1.1 and 1.2], -2 [2.1, 2.2], -3,
-4, and -5 [5.1 and 5.2]). All putative ApHSP90s were confirmed via secondary structure
assessment and phylogenetic analysis with all five identified as the HSP90 alpha (HSP90α)
isoform via phylogenetics. It has been reported that only HSP90α isoforms are secreted
from cells whereas HSP90β isoforms (HSP90β) primarily operate intracellularly [106]. This
is of interest to the secretome dataset, which identified HSP90α proteins in EVs, on the EV
surface and in EV depleted ESP, thus supporting the importance of expression of HSP90α
for production of proteins to be secreted by A. perfoliata and suggesting key roles in host
invasion/interaction. Further work will need to be completed to elucidate if HSP90α is in-
volved in host immune modulation in A. perfoliata infected horses. On further assessment of
the secondary structure, only ApHSP90-4 contained the cytoplasmic HSP90 sequence motif,
MEEVD, whereas ApHSP90-5 (both 5.1 and 5.2) contained KEEL which is 75% conserved to
the KDEL peptide sequences of the HSP90 endoplasmic reticulum (GRP94; 94-kDa glucose-
regulated protein). As expected, there were no ApHSP90 sequences that contained LKID
peptide sequences, which are specific to HSP90β [56,57,99]. Three ApHSP90 sequences
(ApHSP90-1.1, 1.2, 2.1, 2.2, and 3) were also shown to be closely related to other recognised
cytosolic HSP90 sequences within the phylogenetic tree (accession CDS28179 HmicHSP90,
CDS25067 EgraHSP90, and CDS39694 EmulHSP90). Therefore, ApHSP90-1, -2, and -3 may
be the cytosolic HSP90 which are not specific to alpha (inducible isoform) or beta isoforms
(constitutively expressed). The LIP and EDD peptide sequences have been suggested as a
signature sequences of HSP90 alpha isoforms [57], yet they were missing in ApHSP90-4,
although present in the other 4 ApHSP90. Interestingly, the IIP and EDE peptide sequences
were found in ApHSP90-4 instead, which are similar to that observed in E. granulosus
HSP90α (accession XP_024345770 and CDI70178). To this end, ApHSP90-1, -2, -3, and -4 are
most likely to be a cytosolic HSP90, which of ApHSP90-4 is most likely to be HSP90α-like,
whereas ApHSP90-5 is most likely to be an endoplasmic reticulum HSP90.
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In the current study we have generated the first de novo transcriptome for A. perfoliata
to support functional genomics investigations into the host–parasite interaction. In addition,
the first in-depth proteomic profiles of the A. perfoliata secretome has been conducted to
gain insights into this important interface. In doing so, we have demonstrated that the
A. perfoliata secretome contains many proteins that have previously been identified to be
involved in host–parasite interactions, namely through immune modulation of the host
environment, and these are found in both EVs and EV depleted ESP. We have also identified
and characterised novel potential A. perfoliata immune modulators, namely sigma class
GST, α-enolase, and HSP90α isoforms. However, the findings demonstrate a variety of key
secretory molecules from EVs and ESP, which are not limited to those characterised within
the current work, yet the wider immunomodulatory activities of the A. perfoliata secretome
need to be further investigated. Importantly, our study demonstrates that A. perfoliata does
have the potential to modulate the horse host immune response.

4. Materials and Methods
4.1. Collection of Adult A. perfoliata and In Vitro Maintenance

Live adult A. perfoliata were collected from the caecum at the ileocecal valve of natu-
rally infected horses immediately post-slaughter from a commercial abattoir. Specimens
were washed thrice in pre-warmed sterile phosphate-buffered saline (PBS; pH 7.4; Thermo
Scientific, Loughborough, UK) at 39 ◦C to remove host contamination. For subsequent RNA
extraction, six A. perfoliata from six separate infections were immediately snap-frozen in liq-
uid nitrogen for 1 min and stored on dry ice for transportation to the laboratory, where they
were stored at−80 ◦C until RNA extraction. For secretome proteomic analysis, 50 live adult
A. perfoliata per replicate were maintained in vitro from three individual horse infections
following the method previously described [107]. Briefly, A. perfoliata were maintained at
39 ◦C for 5 h in Dulbecco’s modified Eagle’s medium (DMEM, Gibco, Thermo Scientific,
Loughborough, UK; supplemented with 2.2 mM Calcium acetate, 2.7 mM Magnesium
sulphate, 61 mM glucose, 15 mM HEPES pH 7.0–7.6, gentamycin (5 µg/mL), and 1 µM
serotonin). Following the maintenance period, adult A. perfoliata and precipitated debris
were removed. The culture supernatant was collected and immediately stored at −80 ◦C
until extracellular vesicle purification and further proteomics analysis.

4.2. Total RNA Extraction and Purification

Total RNA was extracted and purified from adult A. perfoliata (n = 6) using the Direct-
zol™ RNA MiniPrep Plus Kit (Zymo Research, Cambridge, UK). A. perfoliata were removed
from −80 ◦C and ≤50 mg of the soma, including the scolex, was removed and cut into
small pieces before transferring into a 2 mL microcentrifuge tube containing 600 µL RNA
Isolation Reagent, TRI Reagent® (Zymo Research, Cambridge, UK). Tissue samples were
subsequently disrupted via bead beating by adding a pre-frozen (−80 ◦C) 5 mm stainless-
steel bead (Qiagen, Manchester, UK) and samples placed in a TissueLyser LT (Qiagen,
Manchester, UK) for 2 min at 50 oscillations per s. The bead beating process was repeated
where tissue disruption was not complete. Samples were centrifuged at 15,000× g for 30 s
to pellet any remaining debris and the supernatant extracted following the manufacturer’s
protocol. RNA concentration was determined using a NanoDrop1000 spectrophotometer
(Thermo Scientific, Loughborough, UK) and the integrity determined via a 2100 Bioanalyzer
(Agilent Technologies, CA, USA) assessment, following the manufacturer’s instructions.

4.3. RNA-Seq Library Construction and Next Generation Sequencing

Purified RNA from all samples were sequenced at the Translation Genomics facility
in IBERS, Aberystwyth University. Briefly, RNA purity was assessed using Qubit® RNA HS
Assay Kits with the Qubit® Fluorometer (Invitrogen, Thermo Scientific, Loughborough, UK).
cDNA libraries were then constructed by reverse transcribing 500 ng of total RNA from
each sample using the TruSeq RNA Library Preparation Kit v2 according to the Low Sample
(LS) Workflow (Illumina, Cambridge, UK). RNA adapter Indexes were added and ligated
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on both ends of cDNA to allow multiple indexing of samples pooled together. The cDNA
fragments with adapters then underwent PCR amplification (Illumina, Cambridge, UK).
cDNA quality was determined on a 1.2% w/v agarose gel.

Amplified cDNA libraries were quantified using an Ultrospec EPOCH (BioTek, China),
at an absorbance measurement of 280 nm to normalise a pooling volume of each sample
library prior to sequencing. The final concentration of pooled cDNA libraries was quanti-
fied using a Qubit® 2.0, dsDNA BR Assay Kit (Invitrogen, Life Technologies, Paisley, UK).
Cluster generation and sequencing were performed according to the MiSeq Workflow
using MiSeq Reagent Kit v3 (Illumina, Cambridge, UK). Briefly, cDNA libraries were
adjusted in equimolar concentration to 10 nM concentration with 10 nM Tris HCl (Melford
Laboratories, Suffolk, UK) and 0.05 % v/v Tween-20 solution (Sigma-Aldrich, Merck Life
Sciences, Dorset, UK) followed by diluting to 2 nM with buffer EB (Qiagen, Manchester,
UK). cDNA libraries were denatured to a single stranded DNA using 0.1 M sodium hydrox-
ide (Sigma-Aldrich, Merck Life Sciences, Dorset, UK) and diluted again to final loading
concentration at 6 pM in hybridisation buffer (Illumina, Cambridge, UK). Samples were
clustered onto a MiSeq flow cell and paired-end sequenced on a Miseq™, according to
standard protocols (Illumina, Cambridge, UK). Base pairs (bp) per read were generated in
2 × 75 bp format.

4.4. De Novo Transcriptome Sequencing Analysis Pipeline

The sequencing pipeline was performed through the Galaxy web platform hosted
by IBERS, Aberystwyth University (version 17.01; [108–110]). Prior to assembly, all raw
FASTQ sequencing data files were assessed via FastQC (Galaxy tool version 0.69; Babraham
Bioinformatics; [111]). All reads with a phred quality scores <20 were discarded, although
no reads were found below this cut-off. Based on the FastQC assessment, reads were
trimmed via Trimmomatic (Galaxy Version 0.36.0; [112]). Illuminaclip was initially used
followed by Slidingwindow to remove from the 3′ end and Minlen to remove any reads
below 36 bp long. Trimmed reads were again assessed through FastQC to ensure that the
read quality of the new RNA-Seq datasets had phred scores of ≥30 across more than 70%
of the bases.

De novo assembly of reads was completed in Trinity (v2.11.0; [113,114]) using default
parameters. To determine a common set of transcripts between all six biological replicates,
all six assemblies were clustered together with Cluster Database at High Identity with
Tolerance (cd-hit) software (version 4.8.1; [115–119]). All coding regions within transcript
sequences were identified using the assembled unitranscripts as input through Transde-
coder (part of the Trinity package; [114]). To detect open reading frames (ORF), parameter
settings used at least 100 amino acid long and the ORFs retention of 3000.

Host (horse) contamination was removed from the transcriptome by comparing to pro-
tein and CDS files from the Equus caballus genome from Ensemble (version 3.0; [120]), and
Hymenolepis microstoma as the closest relative genome sequenced cestode (PRJEB124; [64]),
using BLASTp or BLASTx with default options and a minimum e-value of 0.1. Tran-
scripts which were more similar to the host (horse) rather than to Hymenolepis microstoma
were deemed to be likely host contaminants and were subsequently removed from the
transcriptome.

4.5. Functional Annotation and Gene Ontology (GO) Terms Analysis

The resulting assembly was functionally annotated using Omicsbox [121] to predict
the functional description (DE) and GO functional classification of the unigenes. The
expression level of transcripts using RNA-seq data was quantified by Salmon [122]. The
top 50 abundant transcripts were searched against the Omicsbox output to obtain protein
descriptions. Transcripts not found in the output were subsequently translated into protein
sequences using ExPASy Translate tools [123] followed by manually BLASTp against
the NCBI (nr) protein database using a protein query (BLASTp; [124]) and cut-off set at
1.0 × 10−03.
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4.6. Bioinformatic Analysis of Potential Immune Modulators

The transcriptome was analysed for the presence of characterised immune modulators,
previously identified in helminths by performing tBLASTn searched against the A. perfoliata
transcriptome through BioEdit Sequence Alignment Editor (Version 7.2.6.1; [125]). The
number of expected hits of similar quality (e-value) cutoff was set at 1.0 × 10−15 using
various immunomodulator bait peptide sequences retrieved from Genbank and NCBI Ref-
erence Sequence (see immunomodulators listed in Supplementary Table S1). Subsequently,
the top 5 hits from each bait sequence were searched and translated with ExPASy Translate
tools [123] to identify the best opening reading frames (ORFs). The peptide sequence of the
bait proteins were submitted to Pfam database (version 34.0; [126]) to confirm for protein
domain conservation.

Three potential immune modulators in the transcript database, sigma class glutathione
transferase (Sigma class GST), cytoplasmic heat shock protein 90 (HSP90), and alpha-
enolase (α-Enolase), were selected for further bioinformatic analysis. Protein sequences
of recognised Sigma class GST, HSP90 family (alpha and beta isoforms) and α-Enolase
from 13, 22, 14 different species, respectively, covering mammalians, nematodes, trema-
todes, and cestodes were retrieved from Genbank and NCBI Reference Sequence (see
recognised Sigma class GST, HSP90 and α-Enolase proteins sequences in Supplementary
Table S5, [52,56,64,127–142]. Recognised sequences were blasted against the A. perfoliata
transcriptome (cutoff set at 1.0× 10−15, 1.0× 10−20, and 1.0× 10−15 for Sigma GST, HSP90,
and α-Enolase, respectively) and representative A. perfoliata sequences translated into
protein sequences, as previously described. To ensure that selected protein sequences were
either Sigma class GST, HSP90 or α-Enolase, each protein sequence was searched against
the NCBI (nr) protein database using a protein query (BLASTp; [124]). Subsequently, all
representative protein sequences were classified into protein super-families, domain predic-
tion and functional site analysis through InterProScan databases (version 77.0; [143,144]).
The resulting InterPro domains classified as Sigma class GST, HSP90, and α-enolase with
N-terminal domain (NTD), C-terminal domain (CTD) were kept as a unique sigma class
GST, HSP90, and α-enolase protein sequence. All unique classified sigma class GST, HSP90,
and α-enolase sequences, or one representative if isoforms were presented, were taken as a
final sigma class GST, HSP90, and α-enolase representative protein sequence in A. perfoliata
for subsequent phylogenetic analysis.

4.7. Sequence Alignment and Phylogenetic Analysis of Potential Immune Modulators

All multiple sequence alignments of the resulting final sigma class GST, HSP90α, and
α-enolase representative protein sequences of A. perfoliata and recognised sigma class GST,
HSP90α, and α-enolase protein sequences were completed using ClustalW through BioEdit
Sequence Alignment Editor. The secondary characteristic structure including beta sheets
and alpha helixes of novel A. perfoliata sigma class GST, HSP90α, and α-enolase sequences
were then predicted using the Predict Secondary Structure (PSIPRED) Protein Analysis
Workbench (PSIPRED 4.0; [145,146]) followed by protein domain identification and archi-
tecture analysis using Simple Modular Architecture Research (SMART) tools [147,148] to
obtain the novel A. perfoliata Sigma class GST, HSP90α, and α-enolase sequences.

Subsequently, phylogenetic trees were constructed and visualised in MEGA X (version
10.1.7; [149,150]). Reliability of the phylogenetic tree was estimated with 1000 bootstrap
replicates, using both a neighbour-joining (NJ) method and a maximum likelihood (ML)
method. For NJ method, the parameters were set as the correction of the amino acid
data based on the gamma distribution of rates at 1.0 with a Poisson correction method,
pairwise deletions and number of treat at 3. For ML method the parameters were set with a
likelihood of amino acid data determined based upon five discrete gamma rate categories.
An initial tree for the heuristic search was obtained automatically by applying NJ and BIONJ
algorithms to a matrix of pairwise distances estimated using a Jones–Taylor–Thornton (JTT)
substitution model, ML heuristic method, with nearest-neighbor-interchange (NNI), and
number of threads at 3.
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4.8. Extracellular Vesicles Purification by Size Exclusion Chromatography

EVs were purified from A. perfoliata culture media following the protocol described [45].
Briefly, media was centrifuged at 4 ◦C at 300× g for 10 min and then 700× g for 30 min.
Subsequently, residual cells and debris were removed by filtering supernatant through
a 0.45 µm PES syringe membrane filter (STARLAB, Milton Keynes, UK). A. perfoliata su-
pernatant was concentrated using 10 KDaMWCO Amicon® Ultra-15 Centrifugal Filter
Units (MerckMillipore, Merck Life Sciences, Dorset, UK), following the manufacturer’s
guidelines. Briefly, samples were centrifuged at 3000× g for 20 min at 4 ◦C, until approxi-
mately 500 µL of sample was retained in the filter unit. Filtration flow-through was stored
at −80 ◦C for further analysis.

A. perfoliata EVs were then purified using a qEV original size exclusion chromatogra-
phy (SEC) column (iZON Science, Oxford, UK), according to the manufacturer’s protocol.
Briefly, 10 mL of filtered (0.22 µm, STARLAB) PBS (pH 7.4) was loaded through the qEVo-
riginal SEC column, followed by 500 µL of the concentrated supernatant. The first 3 mL of
the filtration flow-through was discarded and SEC purified EVs collected from the next
1.5 mL of the filtration flow-through. Subsequently, 10 mL of filtered PBS was added to the
qEVoriginal SEC column and the next 7.5 mL of the filtration flow-through collected EV
depleted SEC ESP. Both EVs and EV depleted SEC ESP were stored at −80 ◦C until further
proteomics analysis.

4.9. Characterization of Extracellular Vesicles Released from A. perfoliata
4.9.1. Transmission Electron Microscopy (TEM) Analysis

A. perfoliata EV sample (n = 3) preparation for TEM was performed following the
protocol described [151]. Briefly, 10 µL of EVs in 2% paraformaldehyde (PFA) were fixed
onto formvar/Carbon coated Copper TEM grids (400 Mesh, Agar Scientific, Stansted, UK).
Following fixation, each grid was then washed in 100 µL of PBS (pH 7.4) for 1 min followed
by fixing in a 1% (v/v) glutaraldehyde solution (Sigma-Aldrich, Merck Life Sciences, Dorset,
UK) for 5 min. Each TEM grid was washed with distilled water for 2 min for a total of
eight times. Grids were then contrast-stained in 50 µL of uranyl-oxalate solution (pH 7) for
5 min. Finally, TEM grids were embedded in 50 µL of methyl cellulose uranyl-oxalate, for
10 min on ice, and stored at the room temperature before imaging via transmission electron
microscope (JEM1010 Transmission Electron Microscope, Jeol, Tokyo, Japan) at 80 kV as
previously described [45]. The size (dimension) of 200 EVs per purification sample imaged
by TEM were measured using ImageJ (version 1.52a; [152]).

4.9.2. Nanoparticle Tracking Analysis (NTA)

A. perfoliata EVs (n = 3) underwent nanoparticle tracking with size distribution and
number of particles in each replicate determined using a Nanosight NS500 system (Malvern
Instruments, Malvern, UK) equipped with a green 532 nm laser and a high sensitivity
electron multiplying charge-coupled device (EMCCD) camera (Andor Technology, Belfast,
UK), following the manufacturer’s instruction. Samples were diluted in PBS (pH 7.4) to
obtain a concentration of particles ranging between 106 and 109 particles/mL (Malvern
Instruments, Malvern, UK). For each sample, videos of the particles moving under Brow-
nian motion were captured, with a camera level of 15. Subsequently, the captured video
data were analysed using the NanoSight software (NTA version 3.2 Dev Build 3.2.16) to
assess the particle size and concentration of EVs, with the analysis setting set at a detection
threshold of 5.

4.9.3. Extracellular Vesicle Surface Protein Hydrolysis

Surface proteins of SEC purified EVs of A. perfoliata were removed through hydrolysis
with trypsin as previously described [49]. Briefly, SEC purified EVs were diluted with
PBS to a final concentration of 200 µg in 250 µL total volume. Sequencing grade modified
trypsin (100 µg/mL; Roche, U.K) was added to the EVs obtained a final concentration of
50 µg/mL and incubated for 5 min at 37 ◦C. The treated EVs were then centrifuged for 1 h
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at 100,000× g at 4 ◦C. The resulting supernatant was stored at −20 ◦C prior to gel free mass
spectrometry analysis.

4.10. Secretome Proteomics Analysis
4.10.1. One Dimensional Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis

EV depleted SEC ESP were concentrated by precipitation with ice-cold 20% (w/v)
trichloroacetic acid (Thermo Scientific, Loughborough, UK) in 100% acetone as previ-
ously described [107]. Precipitated pellets were re-suspended in Isoelectric Focusing (IEF)
Buffer Z (8 M urea, 2% w/v CHAPS (C32H58N2O7S), 33 mM dithiothreitol, 0.5% carrier
ampholytes v/v BioLyte® 3/10) prior to protein quantification. EVs depleted ESP sam-
ples were quantified using Bradford assay [153] according to the manufacturer’s protocol,
through an UV–visible spectrophotometer (Cary 50, Agilent Technologies, Cheshire, UK)
at an absorbance measurement of A595 nm. The Qubit® Protein Assay Kits along with the
Qubit® 2.0 Fluorometer (Invitrogen, Thermo Scientific, Loughborough, UK) was employed
to quantify the concentration of EV samples according to the manufacturer’s protocol.
Samples were evaporated under a vacuum centrifugation for approximately 1 h to concen-
trate the samples, which was repeated until an acceptable concentration was reached and
quantified. All EVs and EV depleted ESP samples were stored at −20 ◦C until further 1D
SDS-PAGE electrophoresis.

Both EVs and EV depleted ESP samples were run on a mini 1D SDS-PAGE gel, 7cm
12.5 % resolving acrylamide gels. All samples were mixed with 4x SDS loading buffer,
heated to 95 ◦C for 10 min and centrifuged at 21,000× g for 10 min. All samples were run
at a constant voltage of 70V (BioRad) for approximately 20 min until the bromophenol
blue moved through the stacking gel, and then increased to 150 V until completion. Gels
were fixed in 40% (v/v) ethanol and 10% (v/v) acetic acid (Thermo Scientific) for 1 h and
stained overnight with colloidal Coomassie™ Brilliant Blue (80% (v/v) dye stock solution
and 20% (v/v) methanol). Gels were de-stained with 1% v/v acetic acid and then imaged
with a GS-800™ Calibrated Densitometer (BioRad).

4.10.2. Trypsin In-Gel Digestion and Liquid Chromatography-Tandem Mass Spectrometry

SDS PAGE lanes containing either EVs or EV depleted ESP were divided into 9 and
12 sections respectively. Each of these sections were excised for in-gel digestion with
trypsin, as previously described [31]. Briefly, excised gel bands were de-stained with
50% (v/v) acetonitrile (and 50% (v/v) 50 mM ammonium bicarbonate (Thermo Scientific)
at 37 ◦C for 15 min). The supernatant was discarded and the process repeated until
gel pieces were de-stained. Gel bands were then dehydrated in 100% acetonitrile at
37 ◦C for 15 min, and the gel dried at 50 ◦C. Following drying, 10 mM dithiothreitol in
50 mM ammonium bicarbonate was added to gel pieces and incubated at 80 ◦C for 30 min
before then incubating with 55 mM iodoacetamide in in 50 mM ammonium bicarbonate
(Sigma-Aldrich) at room temperature for 20 min. Gel pieces were washed with 50% (v/v)
acetonitrile and 50% (v/v) 50 mM ammonium bicarbonate at room temperature for 15 min,
dehydrated with 100% acetonitrile at room temperature for 15 min and then dried at 50 ◦C.
Gel pieces were rehydrated and digested with 50 mM ammonium bicarbonate containing
trypsin at 10 ng/µL at 37 ◦C for approximately 16 h. Gel pieces were then centrifuged
at 10,000× g for 10 min and then MilliQ water added before placing on a shaker at room
temperature for 10 min, and the supernatant retained. 50% (v/v) acetonitrile and 5% (v/v)
formic acid were again added to the gel pieces at room temperature for 60 min. Gel pieces
were centrifuged as previously and the supernatant retained and added to the previously
retained extraction. All retained supernatants containing peptides were dried until pelleted
ready for mass spectrometry analysis.

Liquid chromatography tandem mass spectrometry was performed at the Advanced
Mass Spectrometry Facility, School of Biosciences, University of Birmingham as a com-
mercial service. Briefly, dried peptide pellets were re-suspended in 0.1% v/v formic acid
and then loaded with an autosampler to be analysed by liquid chromatography tandem
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mass spectrometry (Q Exactive™ HF Hybrid Quadrupole-Orbitrap™ Mass Spectrome-
ter, Thermo Scientific) equipped with a TriVersa Nanomate (Advion, Harlow, UK) and
nanoflow liquid chromatography system (Dionex, Thermo Scientific).

4.10.3. Protein Identification and Gene Ontology Terms Enrichment Analysis

Protein identification of A. perfoliata proteomics profiles were performed through
MASCOT [154] hosted by IBERS, Aberystwyth University, according to the method de-
scribed [107]. Briefly, the acquired MS/MS spectra (Mascot Generic Files) were submitted
to a MASCOT MS/MS ions search (Matrix Science, v2.6; [154]) against the A. perfoliata tran-
scriptome and Equus caballus genome version 3.0. Search parameters used the following:
trypsin enzymatic cleavage with up to one missed cleavage allowed, fixed modifications
to carboxymethyl cysteine with variable modifications set for oxidation of methionine,
fixing fragment monoisotopic mass error with peptide tolerances of ±1.2 Da and MS/MS
of ±0.6 Da, peptide charge 1+, 2+, and 3+, monoisotopic, data format with mascot generic,
electrospray ionization (ESI) TRAP. The resulting identified proteins that indicated the
identity or extensive homology (p < 0.05) were selected according to the individual MAS-
COT ions score with scores set at greater than 48 for EVs and EVs depleted ESP samples
and 47 for EVs surface samples. Subsequently, unique peptides presented in at least two
replicates were then used for searching against the A. perfoliata annotation database (ob-
tained from the Omicsbox) to assign the protein description and Gene Ontology (GO)
terms. The resulting number of proteins identified from MS/MS analysis within A. perfoli-
ata proteomics datasets were then visualised in Venn-diagrams using InteractiVenn [155].
Gene Ontology terms enrichment analysis (GOEA) on gene sets of all proteomics datasets
was performed using GOATOOLS python package (v0.5.9, [156]) whether the GO terms
were propagated up the hierarchy (prop) or were not propagated up the hierarchy (nop)
(p < 0.05 identified significance).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/pathogens10070912/s1, Figure S1: Summary of the distribution of GO terms in the novel
adult A. perfoliata transcriptome at level 3 representing the relative abundance of GO terms in
each three main categories; Figure S2: Multiple sequence alignment of the two novel Sigma class
GSTs identified in A. perfoliata and secondary protein structure prediction; Figure S3: Multiple
sequence alignment of the five novel alpha Heat shock protein 90s identified in A. perfoliata and
secondary protein structure prediction; Figure S4: Multiple sequence alignment of the three novel
α-Enolase from A. perfoliata and secondary protein structure prediction; Figure S5: Protein profiles
of the A. perfoliata secretome fractions. (A) whole extracellular vesicles (EVs) and (B) EV depleted
excretory/secretory protein (ESP) from 3 biological replicates; Figure S6: Gene enrichment analysis of
A perfoliata proteomics datasets; Table S1: Immune modulators sequences and Immune modulators
identified from A. perfoliata transcriptome; Table S2: The full list of proteins identified in A. perfoliata
whole extracellular vesicles (EVs) proteomic dataset; Table S3: The full list of proteins identified on
A. perfoliata extracellular vesicles (EVs) surface proteomic dataset; Table S4: The full list of proteins
identified in A. perfoliata extracellular vesicles (EVs) depleted excretory/secretory protein (ESP)
proteomic dataset; Table S5: Protein sequences of recognised Sigma class GST, HSP90, and α-Enolase.

Author Contributions: Conceptualization, R.E.W. and R.M.M.; Methodology, B.W., J.J.T., N.R.A.,
M.J.H., M.T.S., R.E.W., and R.M.M.; Formal analysis, B.W., B.J.H., C.N.D., S.D.D., A.R.C., and H.C.P.;
Investigation, B.W. and B.J.H.; Writing—original draft preparation, B.W. and B.J.H.; Writing—review
and editing, P.M.B., R.E.W., and R.M.M.; Supervision, R.E.W. and R.M.M. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by Rajamangala University of Technology Srivijaya, Thailand.
The Institute of Biology, Environmental and Rural Sciences (Aberystwyth University, Wales) receives
strategic funding from Biotechnology and Biological Sciences Research that also supported the
current work.

Institutional Review Board Statement: The study was approved by Aberystwyth University Animal
Welfare and Ethical Review Board. As the study used naturally infected horses that were being

https://www.mdpi.com/article/10.3390/pathogens10070912/s1
https://www.mdpi.com/article/10.3390/pathogens10070912/s1


Pathogens 2021, 10, 912 24 of 30

sacrificed as part of commercial processes at an abattoir, approval under the Animal (Scientific
Procedures) Act 1986 was not required.

Informed Consent Statement: Not applicable.

Data Availability Statement: The Transcriptome Shotgun Assembly project has been deposited at
DDBJ/EMBL/GenBank under the accession GJFT00000000. The version described in this paper is
the first version, GJFT01000000. The A. perfoliata transcriptome is available for BLAST analysis at
https://sequenceserver.ibers.aber.ac.uk. Proteomics data from LC-MSMS analysis has been deposited
to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier
PXD027105 and 10.6019/PXD027105.

Acknowledgments: We would like to thank Ravin Jugdaohsingh (Department of Veterinary Medicine,
University of Cambridge) for nanoparticle tracking analysis of A. perfoliata extracellular vesicles.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Gasser, R.B.; Williamson, R.M.C.; Beveridge, I. Anoplocephala perfoliata of horses—Significant scope for further research,

improved diagnosis and control. Parasitology 2005, 131, 1–13. [CrossRef] [PubMed]
2. Lyons, E.T.; Bolin, D.C.; Bryant, U.K.; Cassone, L.M.; Jackson, C.B.; Janes, J.G.; Kennedy, L.A.; Loynachan, A.T.; Boll, K.R.;

Burkhardt, A.S.; et al. Postmortem examination (2016–2017) of weanling and older horses for the presence of select species of
endoparasites: Gasterophilus spp., Anoplocephala spp. and Strongylus spp. in specific anatomical sites. Vet. Parasitol. Reg. Stud.
Rep. 2018, 13, 98–104. [CrossRef]

3. Mathewos, M.; Girma, D.; Fesseha, H.; Yirgalem, M.; Eshetu, E. Prevalence of Gastrointestinal Helminthiasis in Horses and
Donkeys of Hawassa District, Southern Ethiopia. Vet. Med. Int. 2021, 2021, 6686688. [CrossRef]

4. Nielsen, M.K. Equine tapeworm infections: Disease, diagnosis and control. Equine Vet. Educ. 2016, 28, 388–395. [CrossRef]
5. Rehbein, S.; Visser, M.; Winter, R. Prevalence, intensity and seasonality of gastrointestinal parasites in abattoir horses in Germany.

Parasitol. Res. 2013, 112, 407–413. [CrossRef] [PubMed]
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