787 research outputs found

    Thermoelectric properties of graphene incorporated thermoelectric materials

    Get PDF
    Thermoelectric materials, which can change the waste heat into the usable electricity, are interested in various field of applications such as vehicle, ship, power plane, and so on. To enhance the thermoelectric properties, high electrical conductivity, high Seebeck coefficient, and low thermal conductivity should be conducted, however, the trade-off relation between electronic property and thermal property in terms of carrier concentration could be the bottle-neck on the enhancement of thermoelectric properties of the materials. In this presentation, we discuss with the graphene incorporation in the conventional thermoelectric materials, which could lead to independently control electric and thermal properties

    An Optimization of Composition Ratio among Triple-Filled Atoms in In

    Get PDF
    Bulk nanostructured materials are important as energy materials. Among thermoelectric materials, the skutterudite system of CoSb3 is a representative material of bulk nanostructured materials. Filling a skutterudite structure with atoms that have different localized frequencies (also known as triple filling) was reported to be effective for lowering thermal conductivity. Among studies representing superior power factors, In-filled skutterudite systems showed higher Seebeck coefficients. This study sought to optimize the composition ratio among the triple-filled atoms in an In0.3-x-yBaxCeyCo4Sb12 system. The composition dependence of the thermoelectric properties was investigated for specimens with different ratios among the three kinds of filler atoms in the In0.3-x-yBaxCeyCo4Sb12 system. In addition, the process variables were carefully optimized for filled skutterudite systems to obtain a maximum ZT value

    Measuring Complex Refractive Indices of a Nanometer-Thick Superconducting Film Using Terahertz Time-Domain Spectroscopy with a 10 Femtoseconds Pulse Laser

    Get PDF
    Superconducting thin films are widely applied in various fields, including switching devices, because of their phase transition behaviors in relation to temperature changes. Therefore, it is important to quantitatively determine the optical constant of a superconducting material in the thin-film state. We performed a terahertz time-domain spectroscopy, based on a 10 femtoseconds pulse laser, to measure the optical constant of a superconducting GdBa2Cu3O7-x (GdBCO) thin film in the terahertz region. We then estimated the terahertz refractive indices of the 70 nm-thick GdBCO film using a numerical extraction process, even though the film thickness was approximately 1/10,000 times smaller than the terahertz wavelength range of 200 mu m to 1 mm. The resulting refractive indices of the GdBCO thin film were consistent with the theoretical results using the two-fluid model. Our work will help to further understand the terahertz optical properties of superconducting thin films with thicknesses under 100 nm, as well as provide a standard platform for characterizing the optical properties of thin films without the need of Kramers-Kronig transformation at the terahertz frequencies

    Diversity of Cladosporium (Cladosporiales, Cladosporiaceae) species in marine environments and report on five new species

    Get PDF
    Cladosporium species are cosmopolitan fungi, characterized by olivaceous or dark colonies with coronate conidiogenous loci and conidial hila with a central convex dome surrounded by a raised periclinal rim. Cladosporium species have also been discovered in marine environments. Although many studies have been performed on the application of marine originated Cladosporium species, taxonomic studies on these species are scarce. We isolated Cladosporium species from three under-studied habitats (sediment, seawater, and seaweed) in two districts including an intertidal zone in the Republic of Korea and the open sea in the Western Pacific Ocean. Based on multigenetic marker analyses (for the internal transcribed spacer, actin, and translation elongation factor 1), we identified fourteen species, of which five were found to represent new species. These five species were C. lagenariiforme sp. nov., C. maltirimosum sp. nov., C. marinum sp. nov. in the C. cladosporioides species complex, C. snafimbriatum sp. nov. in the C. herbarum species complex, and C. marinisedimentum sp. nov. in the C. sphaerospermum species complex. Morphological characteristics of the new species and aspects of differences with the already known species are described herein together with molecular data

    Focal Nodular Hyperplasia with Retraction of Liver Capsule: A Case Report

    Get PDF
    Focal nodular hyperplasia (FNH) is characterized by the presence a central scar with radiating fibrous septa. Our case had a capsular retraction, which was the result of an extension of the central scar to the surface. In addition, a hypointense scar on the T2-weighted image and a minimal enhancing central scar on the enhanced T1-weighted image, which was due to dense, sclerotic collagenous tissue, were observed. We report the first case of FNH with a capsular retraction

    Mild Encephalopathy with Reversible Lesion in the Splenium of the Corpus Callosum and Bilateral Frontal White Matter

    Get PDF
    A 59-year-old man visited an emergency room due to the sudden onset of severe dysarthria with a drowsy mental status. MRI demonstrated T2 prolongation and restricted diffusion involving the splenium of the corpus callosum and bilateral frontal white matter neurological signs and symptoms were mild, and the recovery was complete within a week. Follow-up MRI performed one month later revealed complete resolution of the lesions. The clinical and radiological courses were consistent with previously reported reversible isolated splenial lesions in mild encephalitis/encephalopathy except for the presence of frontal lesions. This case suggests that such reversible lesions can occur outside the splenium

    Risk factors for overcorrection of severe hyponatremia: a post hoc analysis of the SALSA trial

    Get PDF
    Background Hyponatremia overcorrection can result in irreversible neurologic impairment such as osmotic demyelination syndrome. Few prospective studies have identified patients undergoing hypertonic saline treatment with a high risk of hyponatremia overcorrection. Methods We conducted a post hoc analysis of a multicenter, prospective randomized controlled study, the SALSA trial, in 178 patients aged above 18 years with symptomatic hyponatremia (mean age, 73.1 years; mean serum sodium level, 118.2 mEq/L). Overcorrection was defined as an increase in serum sodium levels by >12 or 18 mEq/L within 24 or 48 hours, respectively. Results Among the 178 patients, 37 experienced hyponatremia overcorrection (20.8%), which was independently associated with initial serum sodium level (≤110, 110–115, 115–120, and 120–125 mEq/L with 7, 4, 2, and 0 points, respectively), chronic alcoholism (7 points), severe symptoms of hyponatremia (3 points), and initial potassium level (<3.0 mEq/L, 3 points). The NASK (hypoNatremia, Alcoholism, Severe symptoms, and hypoKalemia) score was derived from four risk factors for hyponatremia overcorrection and was significantly associated with overcorrection (odds ratio, 1.41; 95% confidence interval, 1.24–1.61; p < 0.01) with good discrimination (area under the receiver-operating characteristic [AUROC] curve, 0.76; 95% CI, 0.66–0.85; p < 0.01). The AUROC curve of the NASK score was statistically better compared with those of each risk factor. Conclusion In treating patients with symptomatic hyponatremia, individuals with high hyponatremia overcorrection risks were predictable using a novel risk score summarizing baseline information
    corecore