2,049 research outputs found

    A TEXT MINING APPROACH TO THE ANALYSIS OF INFORMATION SECURITY AWARENESS: KOREA, UNITED STATES, AND CHINA

    Get PDF
    Recently in Korea, the importance of information security awareness has been receiving a growing attention. Attacks such as social engineering and ransomware are hard to prevent because it cannot be solved by information security technology. Also, the profitability of information security industry has been decreasing for years. Because of this, many companies try to find a new growth-engine and an entry to the foreign market. The main purpose of this paper is to draw out some information security issues that people of each country think and to analyze it. Finally, this study identifies issues and suggests how to improve the situation in Korea. For this, Topic Modeling analysis has been used to find information security issues of each country. Moreover, the score of sentiment analysis has been used to compare each country. The study contributes to the literature by exploring and explaining what critical issues are and how to improve the situation based on the identified issues of the Korean information security industry. Also, this study adds to the literature by demonstrating how text mining can be applied to the context of information security awareness. From a pragmatic perspective, the study has the implications for information security enterprises. This study is expected to provide a new and realistic method of analyzing domestic and foreign issues using the analyzing real data of the Twitter API

    Role of Binder on Yield Strength of polycaprolactone/dimethylsulfone composites for bio-applications

    Get PDF
    Polycaprolactone (PCL) and dimethylsulfone (DMSO2) composites can tailor the properties of scaffold materials, allowing their use in bone tissue engineering. With an increase in DMSO2 content, the modulus of the material increases but not the yield strength. In order to increase yield strength, a binder was added. However, the optimization of the content and the mixing process of the binder were not optimized in the previous studies. In this study, gamma-methacryloxypropyltrimethoxysilane (A-174) was used as a binder to increase the strength of a composite. Four different mixing processes were employed based on the binder mixing sequence. The binders with content of 0, 0.4, 0.5, 0.7, and 1.5 phr were employed. The yield strengths of composites were investigated in terms of the binder mixing sequence and binder content. When the binder and DMSO2 particle fillers were premixed in the PCL matrix consisting of a DMSO2 filler and an A-174 binder system, the filler surface was coated smoothly and uniformly, and less agglomeration occurred. The yield strength of the composites with the appropriate mixing sequence was 36.71 % higher than that of the specimen without a binder, which was attributed to the improved adhesion between the matrix and fillers. Upon increasing the binder content, elongation and tearing of the matrix surface were observed in the cross-sections after yield tests; however, the weakening of mechanical anchoring was caused by excessive binder content, and filler debonding was observed on the surface. Because of the use of the A-174 silane binder at a concentration of 0.5 phr and the premixing of the binder and filler, the highest performance in terms of strength improvement of a PCL-20 wt % DMSO2 composite was achieved

    Enhancement of Mechanical Properties of PCL/PLA/DMSO2 Composites for Bone Tissue Engineering

    Get PDF
    Bone tissue engineering shows potential for regenerating or replacing damaged bone tissues by utilizing biomaterials renowned for their biocompatibility and structural support capabilities. Among these biomaterials, polycaprolactone (PCL) and polylactic acid (PLA) have gained attention due to their biodegradability and versatile applications. However, challenges such as low degradation rates and poor mechanical properties limit their effectiveness. Dimethyl sulfone (DMSO2) has emerged as a potential additive to address these limitations, offering benefits such as reduced viscosity, increased degradation time, and enhanced surface tension. In this study, we investigate tailored composites comprising PLA, PCL, and DMSO2 to enhance mechanical properties and hydrophilicity. Through material characterization and mechanical testing, we found that the addition of DMSO2 led to improvements in the yield strength, modulus, and hydrophilicity of the composites. PCL and DMSO2 10, 20, and 30 wt% were premixed, and 20 wt% PCL + 10, 20, and 30 wt% DMSO2 were mixed with PLA. Specifically, PLA/PCL/DMSO2 composites exhibited higher yield strengths and moduli compared to pure PLA, pure PCL, and PLA/PCL composites. Moreover, the hydrophilicity of the composites increased with DMSO2 concentration, facilitating cell attachment. Fourier-transform infrared spectroscopy (FTIR) confirmed the presence of –COOH and –COH bands in PLA/PCL/DMSO2 composites, indicating chemical interactions between DMSO2 and the polymer matrix. Fractography analysis revealed enhanced interface adhesion in PLA/PCL/DMSO2 composites due to the hydrogen bonding. Overall, this study demonstrates the potential of PLA/PCL/DMSO2 composites in bone tissue engineering applications, offering improved mechanical properties and enhanced cell compatibility. The findings contribute to the advancement of biomaterials for additive manufacturing in tissue engineering and regenerative medicine

    Development of Prediction Method for Dimensional Stability of 3D-Printed Objects

    Get PDF
    Fused deposition modeling (FDM), as one of the additive manufacturing processes, is known for strong layer adhesion suitable for prototypes and end-use items. This study used a multiple regression model and statistical analysis to explore the dimensional accuracy of FDM objects. Factors such as inclination angle, layer thickness, support space, and raster angle were examined. Machine learning models (Gaussian process regression (GPR), support vector machines (SVM), and artificial neural network (ANN)) predicted dimensions using 81 datapoints. The mean squared dimensional error (MSDE) between the measured and designed surface profiles was selected as an output for the dimensional accuracy. Support spacing, layer thickness, and raster angle were determined to be statistically significant, and all factors were confirmed as significant predictors. The coefficients of determination for multiple linear regression, GPR, SVM, and ANN models were 76%, 98%, 93%, and 99%, respectively. The mean absolute errors (MAEs)β€”errors between the measured and the predicted MSDEsβ€”were 0.020 mm and 0.034 mm, respectively, for GPR and SVM models. The MAEs for ANN models were 0.0055 mm for supporting cases and 2.1468 x 10 -5 mm for non-supporting cases

    PCL and DMSO2 Composites for Bio-Scaffold Materials

    Get PDF
    Polycaprolactone (PCL) has been one of the most popular biomaterials in tissue engineering due to its relatively low melting temperature, excellent thermal stability, and cost-effectiveness. However, its low cell attraction, low elastic modulus, and long-term degradation time have limited its application in a wide range of scaffold studies. Dimethyl sulfone (DMSO2) is a stable and non-hazardous organosulfur compound with low viscosity and high surface tension. PCL and DMSO2 composites may overcome the limitations of PCL as a biomaterial and tailor the properties of biocomposites. In this study, PCL and DMSO2 composites were investigated as a new bio-scaffold material to increase hydrophilicity and mechanical properties and tailor degradation properties in vitro. PCL and DMSO2 were physically mixed with 10, 20, and 30 wt% of DMSO2 to evaluate thermal, hydrophilicity, mechanical, and degradation properties of the composites. The water contact angle of the composites for hydrophilicity decreased by 15.5% compared to pure PCL. The experimental results showed that the mechanical and degradation properties of PCL and DMSO2 were better than those of pure PCL, and the properties can be tuned by regulating DMSO2 concentration in the PCL matrix. The elastic modulus of the composite with 30 wt% of DMSO2 showed 532 MPa, and its degradation time was 18 times faster than that of PCL

    Rheological Properties and 3D Printing Behavior of PCL and DMSO2 Composites for Bio-Scaffold

    Get PDF
    The significance of rheology in the context of bio three-dimensional (3D) printing lies in its impact on the printing behavior, which shapes material flow and the layer-by-layer stacking process. The objective of this study is to evaluate the rheological and printing behaviors of polycaprolactone (PCL) and dimethyl sulfone (DMSO2) composites. The rheological properties were examined using a rotational rheometer, employing a frequency sweep test. Simultaneously, the printing behavior was investigated using a material extrusion 3D printer, encompassing varying printing temperatures and pressures. Across the temperature range of 120–140 Β°C, both PCL and PCL/DMSO2 composites demonstrated liquid-like behavior, with a higher loss modulus than storage modulus. This behavior exhibited shear-thinning characteristics. The addition of DMSO2 10, 20, and 30 wt% into the PCL matrix reduced a zero-shear viscosity of 33, 46, and 74% compared to PCL, respectively. The materials exhibited extrusion velocities spanning from 0.0850 to 6.58 mm/s, with velocity being governed by the reciprocal of viscosity. A significant alteration in viscosity by temperature change directly led to a pronounced fluctuation in extrusion velocity. Extrusion velocities below 0.21 mm/s led to the production of unstable printed lines. The presence of distinct viscosities altered extrusion velocity, flow rate, and strut diameter. This phenomenon allowed the categorization of pore shape into three zones: irregular, normal, and no-pore zones. It underscored the importance of comprehending the rheological aspects of biomaterials in enhancing the overall quality of bio-scaffolds during the 3D printing process

    Role of G{alpha}12 and G{alpha}13 as Novel Switches for the Activity of Nrf2, a Key Antioxidative Transcription Factor

    Get PDF
    G{alpha}12 and G{alpha}13 function as molecular regulators responding to extracellular stimuli. NF-E2-related factor 2 (Nrf2) is involved in a protective adaptive response to oxidative stress. This study investigated the regulation of Nrf2 by G{alpha}12 and G{alpha}13. A deficiency of G{alpha}12, but not of G{alpha}13, enhanced Nrf2 activity and target gene transactivation in embryo fibroblasts. In mice, G{alpha}12 knockout activated Nrf2 and thereby facilitated heme catabolism to bilirubin and its glucuronosyl conjugations. An oligonucleotide microarray demonstrated the transactivation of Nrf2 target genes by G{alpha}12 gene knockout. G{alpha}12 deficiency reduced Jun N-terminal protein kinase (JNK)-dependent Nrf2 ubiquitination required for proteasomal degradation, and so did G{alpha}13 deficiency. The absence of G{alpha}12, but not of G{alpha}13, increased protein kinase C {delta} (PKC {delta}) activation and the PKC {delta}-mediated serine phosphorylation of Nrf2. G{alpha}13 gene knockout or knockdown abrogated the Nrf2 phosphorylation induced by G{alpha}12 deficiency, suggesting that relief from G{alpha}12 repression leads to the G{alpha}13-mediated activation of Nrf2. Constitutive activation of G{alpha}13 promoted Nrf2 activity and target gene induction via Rho-mediated PKC {delta} activation, corroborating positive regulation by G{alpha}13. In summary, G{alpha}12 and G{alpha}13 transmit a JNK-dependent signal for Nrf2 ubiquitination, whereas G{alpha}13 regulates Rho-PKC {delta}-mediated Nrf2 phosphorylation, which is negatively balanced by G{alpha}12
    • …
    corecore