3,300 research outputs found

    Gasification of Municipal Solid Waste

    Get PDF
    Gasification of municipal solid waste (MSW) is an attractive alternative fuel production process for the treatment of solid waste as it has several potential benefits over traditional combustion of MSW. Syngas produced from the gasification of MSW can be utilized as a gas fuel being combusted in a conventional burner or in a gas engine to utilize the heat or produce electricity. Also, it can be used as a building block for producing valuable products such as chemicals and other forms of fuel energy. This book chapter covers the properties of MSW, gasification mechanism, chemistry, operating conditions, gasification technologies, processes, recovery system, and most importantly by reviewing the environmental impacts of MSW gasification. As one of recent advanced technologies, a case study of pilot-scale MSW gasification is introduced, which could be one of the most efficient pathways to utilize the technology to produce electricity with a newly developed gasification process by reducing tar and pollutant emission

    New time-scale criteria for model simplification of bio-reaction systems

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Quasi-steady state approximation (QSSA) based on time-scale analysis is known to be an effective method for simplifying metabolic reaction system, but the conventional analysis becomes time-consuming and tedious when the system is large. Although there are automatic methods, they are based on eigenvalue calculations of the Jacobian matrix and on linear transformations, which have a high computation cost. A more efficient estimation approach is necessary for complex systems.</p> <p>Results</p> <p>This work derived new time-scale factor by focusing on the problem structure. By mathematically reasoning the balancing behavior of fast species, new time-scale criteria were derived with a simple expression that uses the Jacobian matrix directly. The algorithm requires no linear transformation or decomposition of the Jacobian matrix, which has been an essential part for previous automatic time-scaling methods. Furthermore, the proposed scale factor is estimated locally. Therefore, an iterative procedure was also developed to find the possible multiple boundary layers and to derive an appropriate reduced model.</p> <p>Conclusion</p> <p>By successive calculation of the newly derived time-scale criteria, it was possible to detect multiple boundary layers of full ordinary differential equation (ODE) models. Besides, the iterative procedure could derive the appropriate reduced differential algebraic equation (DAE) model with consistent initial values, which was tested with simple examples and a practical example.</p

    Impact of Left Atrial Appendage Morphology on Recurrence in Embolic Stroke of Undetermined Source and Atrial Cardiopathy

    Get PDF
    Background: The left atrial appendage (LAA) is a major source of thrombus and non-chicken wing (CW). LAA morphology is a risk factor for embolic events in atrial fibrillation. However, the association of non-CW morphology with embolic stroke recurrence is unknown in patients with embolic stroke of undetermined source (ESUS) and atrial cardiopathy.Methods: We conducted retrospective analyses using a prospective institutional stroke registry (2013–2017). Patients with ESUS and atrial cardiopathy were enrolled. Atrial cardiopathy was diagnosed if an increased left atrial diameter (&gt;40 mm, men; &gt;38 mm, women), supraventricular tachycardia, or LAA filling defect on computed tomography (CT) were present. Patients admitted &gt;24 h after onset were excluded. LAA morphology was evaluated using CT and categorized into CW vs. non-CW types. The primary outcome was embolic stroke recurrence. Multivariable Cox proportional hazards models were used to examine the independent association between LAA morphology and outcome.Results: Of 157 patients, 81 (51.6%) had CW LAA morphology. The median follow-up was 41.5 (interquartile range 12.3–58.5) months corresponding to 509.8 patient years. In total, 18 participants experienced embolic stroke recurrences (3.80 per 100 patient-years). Non-CW morphology was more associated with embolic stroke recurrence than CW morphology (hazard ratio (HR), 3.17; 95% confidence interval (CI), 1.13–8.91; p = 0.029). After adjusting for CHA2DS2-VASc score and number of potential embolic sources, non-CW morphology showed an independent association with outcome (adjusted HR, 2.90; 95% CI, 1.02–8.23; p = 0.045).Conclusions: The LAA morphology types may help identify high risk of embolic stroke recurrence in ESUS with atrial cardiopathy. LAA morphology in atrial cardiopathy may provide clues for developing therapies tailored to specific mechanisms

    Optimal Multiuser Diversity in Multi-Cell MIMO Uplink Networks: User Scaling Law and Beamforming Design

    Get PDF
    We introduce a distributed protocol to achieve multiuser diversity in a multicell multiple-input multiple-output (MIMO) uplink network, referred to as a MIMO interfering multiple-access channel (IMAC). Assuming both no information exchange among base stations (BS) and local channel state information at the transmitters for the MIMO IMAC, we propose a joint beamforming and user scheduling protocol, and then show that the proposed protocol can achieve the optimal multiuser diversity gain, i.e., KM log (SNR log N), as long as the number of mobile stations (MSs) in a cell, N, scales faster than SNRKM-L/1-epsilon for a small constant epsilon &gt; 0, where M, L, K, and SNR denote the number of receive antennas at each BS, the number of transmit antennas at each MS, the number of cells, and the signal-to-noise ratio, respectively. Our result indicates that multiuser diversity can be achieved in the presence of intra-cell and inter-cell interference even in a distributed fashion. As a result, vital information on how to design distributed algorithms in interference-limited cellular environments is provided

    Subacute Neurological Deterioration with Selective Axonal Injury in Patients with Acute Ischemic Stroke following Reperfusion of Middle Cerebral Artery Occlusion

    Get PDF
    To date, the long-term effects of reperfusion on the salvaged brain tissues have not been addressed in the literature. We report 4 cases presenting subacute neurological deteriorations with selective axonal injury following reperfusion therapies for acute ischemic stroke. Our case series based on 4 patients showed common features distinct from those of early reperfusion injury in that (1) the neurological symptoms developed after 1-2 months of reperfusion therapies, (2) these symptoms were accompanied by the subcortical white matter changes on brain MRI, and (3) these findings were mostly reversible with time. This suggests that axons in the reperfused brain may be vulnerable to further neurological injury

    Non-Invasive Follow-up Evaluation of Post-Embolized AVM with Time-Resolved MRA: A Case Report

    Get PDF
    We report the hemodynamic assessment in a patient with cerebral arteriovenous malformation using time-resolved magnetic resonance angiography (TR-MRA), a non-invasive modality, and catheter-based digital subtraction angiography (DSA), before and after embolization. Comparison of the results showed that TR-MRA produced very fast dynamic images and the findings closely matched those obtained at DSA. For initial work-up and follow-up studies in patients with vascular lesions, TR-MRA and DSA are therefore comparable
    corecore