13,343 research outputs found

    Gap Symmetry an Thermal Conductivity in Nodal Superconductors

    Full text link
    There are now many nodal superconductors in heavy fermion (HF) systems, charge conjugated organic metals, high Tc cuprates and ruthenates. On the other hand only few of them have a well established gap function. We present here a study of the angular dependent thermal conductivity in the vortex state of some of the nodal superconductors. We hope it will help to identify the nodal directions in the gap function of UPd_2Al_3, UNi_2Al_3, UBe_13 and URu_2Si_2.Comment: 4 pages, 5 figure

    Nonlinear response and scaling law in the vortex state of d-wave superconductors

    Full text link
    We study the field dependence of the quasi-particle density of states, the thermodynamics and the transport properties in the vortex state of d-wave superconductors when a magnetic field is applied perpendicular to the conducting plane, specially for the low field and the low temperature compared to the upper critical field and transition temperature, respectively, H/Hc21H/H_{c2} \ll 1 and T/Tc1T/T_c \ll 1. Both the superfluid density and the spin susceptibility exhibit the characteristic H\sqrt{H}-field dependence, while the nuclear spin lattice relaxation rate T11_1^{-1} and the thermal conductivity are linear in field HH. With increasing temperature, these quantities exhibit the scaling behavior in T/HT/\sqrt{H}. The present theory applies to 2D ff-wave superconductor as well; a possible candidate of the superconductivity in Sr2_2RuO4_4.Comment: 11 pages, 4 figure

    Central limit theorems and diffusion approximations for multiscale Markov chain models

    Full text link
    Ordinary differential equations obtained as limits of Markov processes appear in many settings. They may arise by scaling large systems, or by averaging rapidly fluctuating systems, or in systems involving multiple time-scales, by a combination of the two. Motivated by models with multiple time-scales arising in systems biology, we present a general approach to proving a central limit theorem capturing the fluctuations of the original model around the deterministic limit. The central limit theorem provides a method for deriving an appropriate diffusion (Langevin) approximation.Comment: Published in at http://dx.doi.org/10.1214/13-AAP934 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    AN ECONOMIC ANALYSIS OF INTERNATIONAL FEED AND MALTING BARLEY MARKETS: AN ECONOMETRIC SPATIAL OLIGOPOLISTIC APPROACH

    Get PDF
    A "hybrid" spatial price equilibrium model is developed to evaluate changes in production, consumption, and trade of feed and malting barley under alternative domestic and agricultural trade policy regimes. The analysis includes the economic welfare impacts of changes in various farm subsidy programs on the United States, Canada, Australia, and European Union (EU-15) which are the four major barley exporting countries in the world. The actions of competitive U.S. grain traders under the Export Enhancement Program cause feed barley exports to be segmented into two distinct markets. A spatial equilibrium is established in which the Canadian Wheat Board and Australian marketing boards behave as oligopolists in export markets under arbitrage conditions induced by U.S. and EU-15 grain traders.Malting, Feed, Farm Subsidy, Trade Policy, Export Market, Welfare, International Relations/Trade,

    Elasticity-based polymer sorting in active fluids: A Brownian dynamics study

    Get PDF
    While the dynamics of polymer chains in equilibrium media is well understood by now, the polymer dynamics in active non-equilibrium environments can be very different. Here we study the dynamics of polymers in a viscous medium containing self-propelled particles in two dimensions by using Brownian dynamics simulations. We find that the polymer center of mass exhibits a superdiffusive motion at short to intermediate times and the motion turns normal at long times, but with a greatly enhanced diffusivity. Interestingly, the long time diffusivity shows a non-monotonic behavior as a function of the chain length and stiffness. We analyze how the polymer conformation and the accumulation of the self-propelled particles, and therefore the directed motion of the polymer, are correlated. At the point of maximal polymer diffusivity, the polymer has preferentially bent conformations maintained by the balance between the chain elasticity and the propelling force generated by the active particles. We also consider the barrier crossing dynamics of actively-driven polymers in a double-well potential. The barrier crossing times are demonstrated to have a peculiar non-monotonic dependence, related to that of the diffusivity. This effect can be potentially utilized for sorting of polymers from solutions in \textit{in vitro} experiments.Comment: 11 pages, 7 figure

    Possible f-wave superconductivity in Sr2_2RuO4_4?

    Full text link
    Until recently it has been believed that the superconductivity in Sr2_2RuO4_4 is described by p-wave pairing. However, both the recent specific heat and the magnetic penetration depth measurements on the purest single crystals of Sr2_2RuO4_4 appear to be explained more consistently in terms of f-wave superconductivity. In order to further this hypothesis, we study theoretically the thermodynamics and thermal conductivity of f-wave superconductors in a planar magnetic field. We find the simple expressions for these quantities when HHc2H \ll H_{c2} and TTcT \ll T_{c}, which should be readily accessible experimentally.Comment: 6 pages, 2 figure

    Low-lying excitations around a single vortex in a d-wave superconductor

    Full text link
    A full quantum-mechanical treatment of the Bogoliubov-de Gennes equation for a single vortex in a d-wave superconductor is presented. First, we find low-energy states extended in four diagonal directions, which have no counterpart in a vortex of s-wave superconductors. The four-fold symmetry is due to 'quantum effect', which is enhanced when pFξp_{F}\xi is small. Second, for pFξ1p_{F}\xi \sim 1, a peak with a large energy gap E0ΔE_{0}\sim \Delta is found in the density of states, which is due to the formation of the lowest bound states.Comment: 7pages, Revte
    corecore