52 research outputs found

    Co-operative transitions of responsive-polymer coated gold nanoparticles ; precision tuning and direct evidence for co-operative aggregation

    Get PDF
    Responsive polymers and polymer-coated nanoparticles have many potential bio-applications with the crucial parameter being the exact temperature where the transition occurs. Chemical modification of hydrophobic/hydrophilic or ligand binding sites has been widely explored as a tool for controlling this transition, but requires the synthesis of many different components to achieve precise control. This study reports an extensive investigation into the use of blending (i.e. mixing) as a powerful tool to modulate the transition temperature of poly(N-isopropylacrylamide) (PNIPAM) coated gold nanoparticles. By simply mixing two nanoparticles of different compositions, precise control over the transition temperature can be imposed. This was shown to be flexible to all possible mixing parameters (different polymers on different particles, different polymers on same particles and different sized particles with identical/different polymers). Evidence of the co-operative aggregation of differently sized nanoparticles (with different cloud points) is shown using transmission electron microscopy; particles with higher cloud points aggregate with those with lower cloud points with homo-aggregates not seen, demonstrating the co-operative behaviour. These interactions, and the opportunities for transition tuning will have implications in the rational design of responsive biomaterials

    Externally controllable glycan presentation on nanoparticle surfaces to modulate lectin recognition

    Get PDF
    Nature dynamically controls carbohydrate expression on cells rather than static presentation. Here we report synthetic glycosylated nanoparticles that contain polymeric ‘gates’ to enable external control (via temperature changes) of glycan surface expression, as an alternative to enzymatic control in Nature. This approach offers a new dynamic multivalent scaffold for glycan recognition

    Effect of GCSB-5, a Herbal Formulation, on Monosodium Iodoacetate-Induced Osteoarthritis in Rats

    Get PDF
    Therapeutic effects of GCSB-5 on osteoarthritis were measured by the amount of glycosaminoglycan in rabbit articular cartilage explants in vitro, in experimental osteoarthritis induced by intra-articular injection of monoiodoacetate in rats in vivo. GCSB-5 was orally administered for 28 days. In vitro, GCSB-5 inhibited proteoglycan degradation. GCSB-5 significantly suppressed the histological changes in monoiodoacetate-induced osteoarthritis. Matrix metalloproteinase (MMP) activity, as well as, the levels of serum tumor necrosis factor-α, cyclooxygenase-2, inducible nitric oxide synthase protein, and mRNA expressions were attenuated by GCSB-5, whereas the level of interleukin-10 was potentiated. By GCSB-5, the level of nuclear factor-κB p65 protein expression was significantly attenuated but, on the other hand, the level of inhibitor of κB-α protein expression was increased. These results indicate that GCSB-5 is a potential therapeutic agent for the protection of articular cartilage against progression of osteoarthritis through inhibition of MMPs activity, inflammatory mediators, and NF-κB activation

    Integrated Rocket Simulation of Internal and External Flow Dynamics in an e-Science Environment

    Get PDF
    The internal and external flowfield variation of a launch vehicle has been simulated in an e-Science environment. To analyze the igniting process of a solid-rocket propellant, a fluid-structure interaction code has been developed using an ALE (arbitrary Lagrangian Eulerian) kinematical description and a staggered fluid-structure interaction algorithm. Also, unsteady motion of a detached rocket booster has been predicted by using an external flow analysis with an aerodynamic-dynamic coupled solver. A Korean e-Science environment designed for aerospace engineering, e-AIRS [15], supplies a user-friendly interface for such individual work and it can advance to an integrated rocket simulation of internal combustion and external flow variation by controlling the execution and data flow of two flow solvers. As a consequence, e-Science facilitates multi-disciplinary collaborative research, and makes individual work more convenient.The current work is a product of the Korea National e-Science project. The authors are grateful to the Korea Institute of Science and Technology Information for their financial support. Also, the authors appreciate the financial supports provided by NSL(National Space Lab.) program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (Grant 20090091724) and the authors are grateful to the Agency for Defence Development for financial support on solid-rocket propellant research.OAIID:oai:osos.snu.ac.kr:snu2009-01/102/0000004648/4SEQ:4PERF_CD:SNU2009-01EVAL_ITEM_CD:102USER_ID:0000004648ADJUST_YN:YEMP_ID:A001138DEPT_CD:446CITE_RATE:1.2FILENAME:article.pdfDEPT_NM:기계항공공학부EMAIL:[email protected]_YN:YCONFIRM:

    Seamless monolithic three-dimensional integration of single-crystalline films by growth

    Full text link
    The demand for the three-dimensional (3D) integration of electronic components is on a steady rise. The through-silicon-via (TSV) technique emerges as the only viable method for integrating single-crystalline device components in a 3D format, despite encountering significant processing challenges. While monolithic 3D (M3D) integration schemes show promise, the seamless connection of single-crystalline semiconductors without intervening wafers has yet to be demonstrated. This challenge arises from the inherent difficulty of growing single crystals on amorphous or polycrystalline surfaces post the back-end-of-the-line process at low temperatures to preserve the underlying circuitry. Consequently, a practical growth-based solution for M3D of single crystals remains elusive. Here, we present a method for growing single-crystalline channel materials, specifically composed of transition metal dichalcogenides, on amorphous and polycrystalline surfaces at temperatures lower than 400 {\deg}C. Building on this developed technique, we demonstrate the seamless monolithic integration of vertical single-crystalline logic transistor arrays. This accomplishment leads to the development of unprecedented vertical CMOS arrays, thereby constructing vertical inverters. Ultimately, this achievement sets the stage to pave the way for M3D integration of various electronic and optoelectronic hardware in the form of single crystals

    Comparison of anti-oxidant activities of seventy herbs that have been used in Korean traditional medicine

    Get PDF
    Many herbs have been used as therapeutics in Korean traditional medicine. In view of their clinical indications, anti-oxidant activity may contribute to their pharmacological effects. However, anti-oxidant information on these plants has not been available. In this study, seventy herbs which have been used in Korean traditional medicine were selected and screened for anti-oxidant activity using their water extracts. The anti-oxidant activity was assessed by their ability to inhibit three oxidation reactions; luminol/Fenton reagent, 2, 7-dichlorodihydrofluorescein (DCHF)/Fenton reagent and DCHF/peroxynitrite. In each assay, 70 herbs were divided into two groups; anti-oxidant group which inhibited the respective oxidation reaction and was majority (about 60 herbs), and pro-oxidant group which enhanced the oxidation reaction but was minority (more or less 10 herbs). When the herbs were listed in the order of their anti-oxidant strength, the orders obtained from each assay were found to be quite similar. The upper top rankers (more or less 10 herbs) in each assay showed strong activity compared to the others. The uppermost rankers in each assay were Rubus coreanus Miquel/ Rubus schizostylus, Schisandra chinensis Baillon/ Schizandra chinensis and Terminalia chebula Retzius/ Terminalia chebula. Of the pro-oxidant herbs, about 4-5 herbs were strongly pro-oxidant, which enhanced the control oxidation reactions to 150-300%. But the meaning of this observation is not known since few of them in one assay were also anti-oxidant in other assays. The results obtained in the present study may serve as information for understanding pharmacological effects of these herbs and developing new drugs from them

    In Vivo Induction of Regulatory T Cells Via CTLA-4 Signaling Peptide to Control Autoimmune Encephalomyelitis and Prevent Disease Relapse

    Get PDF
    Regulatory T cells play a key role in immune tolerance to self-antigens, thereby preventing autoimmune diseases. However, no drugs targeting Treg cells have been approved for clinical trials yet. Here, a chimeric peptide is generated by conjugation of the cytoplasmic domain of CTLA-4 (ctCTLA-4) with dNP2 for intracellular delivery, dNP2-ctCTLA-4, and evaluated Foxp3 expression during Th0, Th1, Treg, and Th17 differentiation dependent on TGF-β. The lysine motif of ctCTLA-4, not tyrosine motif, is required for Foxp3 expression for Treg induction and amelioration of experimental autoimmune encephalomyelitis (EAE). Transcriptome analysis reveals that dNP2-ctCTLA-4-treated T cells express Treg transcriptomic patterns with properties of suppressive functions. In addition, the molecular interaction between the lysine motif of ctCTLA-4 and PKC-η is critical for Foxp3 expression. Although both CTLA-4-Ig and dNP2-ctCTLA-4 treatment in vivo ameliorated EAE progression, only dNP2-ctCTLA-4 requires Treg cells for inhibition of disease progression and prevention of relapse. Furthermore, the CTLA-4 signaling peptide is able to induce human Tregs in vitro and in vivo as well as from peripheral blood mononuclear cells (PBMCs) of multiple sclerosis patients. These results collectively suggest that the chimeric CTLA-4 signaling peptide can be used for successful induction of regulatory T cells in vivo to control autoimmune diseases, such as multiple sclerosis

    Responsive gold nano particles for biomedical applications

    Get PDF
    Responsive polymer-based gold nanoparticles are capable of altering their unique optical properties, chemical and/or physical properties upon exposure to external stimuli, which allows these materials to use in a diverse range of biomedical applications. Herein, the use of temperature responsive polymers and glycopolymers functionalised gold nanoparticles is given as sensors and biosensors, for controlled and triggered target detection. Chapter 2 investigates the transition characterisation and thermal aggregation co-operative behaviour of thermo-responsive polymer conjugated gold nanoparticles for a detailed understanding of fundamental features to apply in a biosensing system. Chapter 3 develops an optical, gold nanoparticle-based biosensor for the detection of specific biological target. Both temperature responsive and molecular recognizable polymers co-coated gold nanoparticles that change colour by protein-carbohydrate interaction mediated interparticular aggregation are controllable at desired condition. Optimisation of the particle coating is very essential to enhance the sensitivity and specificity of the biosensing system. Finally, this strategy is then extended and improved in Chapter4, with a larger glycans for probing control over the expression of particle surface glycans triggering carbohydrate-carbohydrate interactions with high specificity and selectivity, effectively. In summary, functionalised polymers and gold nanoparticles have been synthesized and developed as a biosensor. These gold nanoparticle conjugates may promise a powerful solution for rapid and reliable identification of disease and point-of-care treatment in modern healthcare issue
    corecore