578 research outputs found

    Spectral shifts in quasi-stellar objects

    Get PDF
    Red and blue shift frequency distribution of quasi-stellar objects from nearby galaxie

    On the de Haas-van Alphen effect in inhomogeneous alloys

    Full text link
    We show that Landau level broadening in alloys occurs naturally as a consequence of random variations in the local quasiparticle density, without the need to consider a relaxation time. This approach predicts Lorentzian-broadened Landau levels similar to those derived by Dingle using the relaxation-time approximation. However, rather than being determined by a finite relaxation time τ\tau, the Landau-level widths instead depend directly on the rate at which the de Haas-van Alphen frequency changes with alloy composition. The results are in good agreement with recent data from three very different alloy systems.Comment: 5 pages, no figure

    Radio Images of 3C 58: Expansion and Motion of its Wisp

    Full text link
    New 1.4 GHz VLA observations of the pulsar-powered supernova remnant 3C 58 have resulted in the highest-quality radio images of this object to date. The images show filamentary structure over the body of the nebula. The present observations were combined with earlier ones from 1984 and 1991 to investigate the variability of the radio emission on a variety of time-scales. No significant changes are seen over a 110 day interval. In particular, the upper limit on the apparent projected velocity of the wisp is 0.05c. The expansion rate of the radio nebula was determined between 1984 and 2004, and is 0.014+/-0.003%/year, corresponding to a velocity of 630+/-70 km/s along the major axis. If 3C 58 is the remnant of SN 1181, it must have been strongly decelerated, which is unlikely given the absence of emission from the supernova shell. Alternatively, the low expansion speed and a number of other arguments suggest that 3C 58 may be several thousand years old and not be the remnant of SN 1181.Comment: 12 pages; accepted for publication in the Astrophysical Journa

    Kinematics of the Galactic Globular Cluster System: New Radial Velocities for Clusters in the Direction of the Inner Galaxy

    Get PDF
    HIRES on the Keck I telescope has been used to measure the first radial velocities for stars belonging to eleven, heavily-reddened globular clusters in the direction of the inner Galaxy. The question of kinematic substructuring among the Galactic globular cluster system is investigated using an updated catalog of globular cluster distances, metallicities and velocities. It is found that the population of metal-rich globular clusters shows significant rotation at all Galactocentric radii. For the metal-rich clusters within 4 kpc of the Galactic center, the measured rotation velocity and line-of-sight velocity dispersion are similar to those of bulge field stars. We investigate claims that the metal-rich clusters are associated with the central Galactic bar by comparing the kinematics of the innermost clusters to that of the atomic hydrogen in the inner Galaxy. The longitude-velocity diagram of both metal-rich and metal-poor clusters bears a remarkable similarity to that of the gas, including the same non-circular motions which have traditionally been interpreted as evidence for a Galactic bar, or, alternatively, a non-axisymmetric bulge. However, uncertainties in the existing three-dimensional Galactocentric positions for most of the clusters do not yet allow an unambiguous discrimination between the competing scenarios of membership in a rigidly rotating bar, or in a bulge which is an oblate isotropic rotator. We conclude that the majority of metal-rich clusters within the central 4 kpc of the Galaxy are probably associated with the bulge/bar, and not the thick disk. (ABRIDGED)Comment: 18 pages, including 7 of 13 postscript figures. Figures 1-6 available at http://astro.caltech.edu/~pc. Accepted for publication in the Astronomical Journa

    X-Ray Observations of the supernova remnant G21.5-0.9

    Full text link
    We present the analysis of archival X-ray observations of the supernova remnant (SNR) G21.5-0.9. Based on its morphology and spectral properties, G21.5-0.9 has been classified as a Crab-like SNR. In their early analysis of the CHANDRA calibration data, Slane et al. (2000) discovered a low-surface-brightness, extended emission. They interpreted this component as the blast wave formed in the supernova (SN) explosion. In this paper, we present the CHANDRA analysis using a total exposure of ~150 ksec. We also include ROSAT and ASCA observations. Our analysis indicates that the extended emission is non-thermal -- a result in agreement with XMM observations. The entire remnant of radius ~ 2'.5 is best fitted with a power law model with a photon index steepening away from the center. The total unabsorbed flux in the 0.5-10 keV is 1.1E-10 erg/cm2/s with an 85% contribution from the 40" radius inner core. Timing analysis of the High-Resolution Camera (HRC) data failed to detect any pulsations. We put a 16% upper limit on the pulsed fraction. We derive the physical parameters of the putative pulsar and compare them with those of other plerions (such as the Crab and 3C 58). G21.5-0.9 remains the only plerion whose size in X-rays is bigger than in the radio. Deep radio observations will address this puzzle.Comment: 23 pages including 11 figures and 3 tables; accepted by ApJ June 22, 2001; to appear in Oct 20, 2001 issue of Ap

    Radio Spectral Index and Expansion of 3C58

    Full text link
    We present new observations of the plerionic supernova remnant 3C58 with the VLA at 74 and 327 MHz. In addition, we re-reduced earlier observations at 1.4 and 4.9 GHz taken in 1973 and 1984. Comparing these various images, we find that: 1. the remnant has a flat and relatively uniform spectral index distribution, 2. any expansion of the remnant with time is significantly less than that expected for uniform, undecelerated expansion since the generally accepted explosion date in 1181 A.D., and 3. there is no evidence for a non-thermal synchrotron emission shell generated by a supernova shock wave, with any such emission having a surface brightness of <1 x 10^(-21) W / (m^2 Hz sr) at 327 MHz.Comment: 18 pages, 7 Figures, Latex, Accepted for publication in the Astrophysical Journa

    A Multi-Frequency Radio Study of Supernova Remnant G292.0+1.8 and its Pulsar Wind Nebula

    Full text link
    (Abridged) We present a detailed radio study of the young supernova remnant (SNR) G292.0+1.8 and its associated pulsar PSR J1124-5916, using the Australia Telescope Compact Array at observing wavelengths of 20, 13 and 6 cm. We find that the radio morphology of the source consists of three main components: a polarized flat-spectrum central core coincident with the pulsar J1124-5916, a surrounding circular steep-spectrum plateau with sharp outer edges and, superimposed on the plateau, a series of radial filaments with spectra significantly flatter than their surroundings. HI absorption argues for a lower limit on the distance to the system of 6 kpc. The core clearly corresponds to radio emission from a pulsar wind nebula powered by PSR J1124-5916, while the plateau represents the surrounding SNR shell. The plateau's sharp outer rim delineates the SNR's forward shock, while the thickness of the plateau region demonstrates that the forward and reverse shocks are well-separated. Assuming a distance of 6 kpc and an age for the source of 2500 yr, we infer an expansion velocity for the SNR of ~1200 km/s and an ambient density ~0.9 cm^-3. We interpret the flat-spectrum radial filaments superimposed on the steeper-spectrum plateau as Rayleigh-Taylor unstable regions between the forward and reverse shocks of the SNR. The flat radio spectrum seen for these features results from efficient second-order Fermi acceleration in strongly amplified magnetic fields.Comment: 11 pages of text, plus 7 embedded EPS figures. Accepted to ApJ. Added missing units on x-axis of Fig

    Perfect magnetohydrodynamics as a field theory

    Get PDF
    We propose the generally covariant action for the theory of a self-coupled complex scalar field and electromagnetism which by virtue of constraints is equivalent, in the regime of long wavelengths, to perfect magnetohydrodynamics (MHD). We recover from it the Euler equation with Lorentz force, and the thermodynamic relations for a prefect fluid. The equation of state of the latter is related to the scalar field's self potential. We introduce 1+3 notation to elucidate the relation between MHD and field variables. In our approach the requirement that the scalar field be single valued leads to the quantization of a certain circulation in steps of \hbar; this feature leads, in the classical limit, to the conservation of that circulation. The circulation is identical to that in Oron's generalization of Kelvin's circulation theorem to perfect MHD; we here characterize the new conserved helicity associated with it. We also demonstrate the existence for MHD of two Bernoulli-like theorems for each spacetime symmetry of the flow and geometry; one of these is pertinent to suitably defined potential flow. We exhibit the conserved quantities explicitly in the case that two symmetries are simultaneously present, and give examples. Also in this case we exhibit a new conserved MHD circulation distinct from Oron's, and provide an example.Comment: RevTeX, 16 pages, no figures; clarifications added and typos corrected; version to be published in Phys. Rev.

    The nature of the X-ray halo of the plerion G21.5-0.9 unveiled by XMM-Newton and Chandra

    Full text link
    The nature of the radio-quiet X-ray halo around the plerionic SNR G21.5-0.9 is under debate. On the basis of spatial and spectral analysis of a large Chandra and XMM-Newton dataset of this source, we have developed a self-consistent scenario which explains all the observational features. We found that the halo is composed by diffuse extended emission due to dust scattering of X-rays from the plerion, by a bright limb which traces particle acceleration in the fast forward shock of the remnant, and by a bright spot (the ``North Spur'') which may be a knot of ejecta in adiabatic expansion. By applying a model of interaction between the PWN, the SNR and supernova environment, we argue that G21.5-0.9 progenitor may be of Type IIP or Ib/Ic, and that the remnant may be young (200-1000 yr).Comment: 11 pages, 10 figures, accepted by A&A, also avalaible at http://www.astropa.unipa.it/Library/OAPA_preprints/fb2870.ps.g
    corecore