10 research outputs found

    Pharmacogenetics of the Central Nervous System—Toxicity and Relapse Affecting the CNS in Pediatric Acute Lymphoblastic Leukemia

    Get PDF
    Despite improving cure rates in childhood acute lymphoblastic leukemia (ALL), therapeutic side effects and relapse are ongoing challenges. These can also affect the central nervous system (CNS). Our aim was to identify germline gene polymorphisms that influence the risk of CNS events. Sixty single nucleotide polymorphisms (SNPs) in 20 genes were genotyped in a Hungarian non-matched ALL cohort of 36 cases with chemotherapy related acute toxic encephalopathy (ATE) and 544 controls. Five significant SNPs were further analyzed in an extended Austrian-Czech-NOPHO cohort (n = 107 cases, n = 211 controls) but none of the associations could be validated. Overall populations including all nations’ matched cohorts for ATE (n = 426) with seizure subgroup (n = 133) and posterior reversible encephalopathy syndrome (PRES, n = 251) were analyzed, as well. We found that patients with ABCB1 rs1045642, rs1128503 or rs2032582 TT genotypes were more prone to have seizures but those with rs1045642 TT developed PRES less frequently. The same SNPs were also examined in relation to ALL relapse on a case-control matched cohort of 320 patients from all groups. Those with rs1128503 CC or rs2032582 GG genotypes showed higher incidence of CNS relapse. Our results suggest that blood-brain-barrier drug transporter gene-polymorphisms might have an inverse association with seizures and CNS relapse

    Relapse risk following truncation of pegylated asparaginase in childhood acute lymphoblastic leukemia

    Get PDF
    Truncation of asparaginase treatment due to asparaginase-related toxicities or silent inactivation (SI) is common and may increase relapse risk in acute lymphoblastic leukemia (ALL). We investigated relapse risk following suboptimal asparaginase exposure among 1401 children aged 1 to 17 years, diagnosed with ALL between July 2008 and February 2016, treated according to the Nordic Society of Pediatric Hematology and Oncology (NOPHO) ALL2008 protocol (including extended asparaginase exposure [1000 IU/m(2) intramuscularly weeks 5-33]). Patients were included with delayed entry at their last administered asparaginase treatment, or detection of SI, and followed until relapse, death, secondary malignancy, or end of follow-up (median, 5.71 years; interquartile range, 4.02-7.64). In a multiple Cox model comparing patients with (n = 358) and without (n = 1043) truncated asparaginase treatment due to clinical toxicity, the adjusted relapse-specific hazard ratio (HR; aHR) was 1.33 (95% confidence interval [CI], 0.86-2.06; P = .20). In a substudy including only patients with information on enzymeactivity (n = 1115), the 7-year cumulative incidence of relapse for the 301 patients with truncation of asparaginase treatment or SI (157 hypersensitivity, 53 pancreatitis, 14 thrombosis, 31 other, 46 SI) was 11.1%(95% CI, 6.9-15.4) vs 6.7%(95% CI, 4.7-8.6) for the 814 remaining patients. The relapse-specific aHR was 1.69 (95% CI, 1.05-2.74, P=.03). The unadjusted bone marrow relapse-specific HR was 1.83 (95% CI, 1.07-3.14, P=.03) and 1.86 (95% CI, 0.90- 3.87, P=.095) for any central nervous system relapse. These results emphasize the importance of therapeutic drug monitoring and appropriate adjustment of asparaginase therapy when feasible.Peer reviewe

    Dyslipidemia at diagnosis of childhood acute lymphoblastic leukemia.

    Get PDF
    As survival of acute lymphoblastic leukemia (ALL) exceeds 90%, limiting therapy-related toxicity has become a key challenge. Cardio-metabolic dysfunction is a challenge during and after childhood ALL therapy. In a single center study, we measured triglycerides (TG), total cholesterol (TC), high (HDL) and low density lipoproteins (LDL) levels at diagnosis and assessed the association with BMI, early therapy response, on-therapy hyperlipidemia and the toxicities; thromboembolism, osteonecrosis and pancreatitis. We included 127 children (1.0-17.9 years) all treated according to the NOPHO ALL2008 protocol. Dyslipidemia was identified at ALL-diagnosis in 99% of the patients, dominated by reduced HDL levels (98%) and mild hypertriglyceridemia (61%). Hypertriglyceridemia was not associated with body mass index (P = 0.71). Five percent of patients had mild hypercholesterolemia, 14% had mild hypocholesterolemia, 13% had decreased and 1% elevated LDL-levels. Increased TG and TC levels at ALL-diagnosis were not associated with any on-therapy lipid levels. Lipid levels and BMI were not associated to MRD after induction therapy; However, BMI and hypercholesterolemia were associated with worse risk group stratification (P<0.045 for all). The cumulative incidence of thromboembolism was increased both for patients with hypo- (20.0%) and hypercholesterolemia (16.7%) compared to patients with normal TC levels (2.2%) at diagnosis (P = 0.0074). In conclusion, dyslipidemic changes were present prior to ALL-therapy in children with ALL but did not seem to affect dysmetabolic traits during therapy and were not predictive of on-therapy toxicities apart from an association between dyscholesterolemia at time of ALL-diagnosis and risk of thromboembolism. However, the latter should be interpreted with caution due to low number in the groups

    Non-infectious chemotherapy-associated acute toxicities during childhood acute lymphoblastic leukemia therapy

    Get PDF
    During chemotherapy for childhood acute lymphoblastic leukemia, all organs can be affected by severe acute side effects, the most common being opportunistic infections, mucositis, central or peripheral neuropathy (or both), bone toxicities (including osteonecrosis), thromboembolism, sinusoidal obstruction syndrome, endocrinopathies (especially steroid-induced adrenal insufficiency and hyperglycemia), high-dose methotrexate-induced nephrotoxicity, asparaginase-associated hypersensitivity, pancreatitis, and hyperlipidemia. Few of the non-infectious acute toxicities are associated with clinically useful risk factors, and across study groups there has been wide diversity in toxicity definitions, capture strategies, and reporting, thus hampering meaningful comparisons of toxicity incidences for different leukemia protocols. Since treatment of acute lymphoblastic leukemia now yields 5-year overall survival rates above 90%, there is a need for strategies for assessing the burden of toxicities in the overall evaluation of anti-leukemic therapy programs

    Effects of germline DHFR and FPGS variants on methotrexate metabolism and relapse of leukemia.

    No full text
    To access publisher's full text version of this article click on the hyperlink belowMethotrexate (MTX) during maintenance therapy is essential for curing acute lymphoblastic leukemia (ALL), but dosing strategies aiming at adequate treatment intensity are challenged by interindividual differences in drug disposition. To evaluate genetic factors associated with MTX metabolism, we performed a genome-wide association study in 447 ALL cases from the Nordic Society for Pediatric Haematology and Oncology ALL2008 study, validating results in an independent set of 196 patients. The intergenic single-nucleotide polymorphism rs1382539, located in a regulatory element of DHFR, was associated with increased levels of short-chain MTX polyglutamates (P = 1.1 × 10-8) related to suppression of enhancer activity, whereas rs35789560 in FPGS (p.R466C, P = 5.6 × 10-9) was associated with decreased levels of long-chain MTX polyglutamates through reduced catalytic activity. Furthermore, the FPGS variant was linked with increased relapse risk (P = .044). These findings show a genetic basis for interpatient variability in MTX response and could be used to improve future dosing algorithms.Danish Cancer Society Danish Childhood Cancer Foundation Swedish Childhood Cancer Foundation Nordic Cancer Union Otto Christensen Foundation University Hospital Rigshospitalet Novo Nordisk Foundation United States Department of Health & Human Services National Institutes of Health (NIH) - USA NIH National Institute of General Medical Sciences (NIGMS) Alex's Lemonade Stand Foundatio

    NT5C2 germline variants alter thiopurine metabolism and are associated with acquired NT5C2 relapse mutations in childhood acute lymphoblastic leukaemia.

    No full text
    To access publisher's full text version of this article click on the hyperlink belowThe antileukaemic drug 6-mercaptopurine is converted into thioguanine nucleotides (TGN) and incorporated into DNA (DNA-TG), the active end metabolite. In a series of genome-wide association studies, we analysed time-weighted means (Danish Cancer Society Danish Childhood Cancer Foundation Swedish Childhood Cancer Foundation Nordic Cancer Union Otto Christensen Foundation, University Hospital Rigshospitalet Novo Nordic Foundatio
    corecore