5 research outputs found

    Estimation of ammonia deposition to forest ecosystems in Scotland and Sri Lanka using wind-controlled NH3 enhancement experiments

    Get PDF
    Ammonia (NH3) pollution has emerged as a major cause of concern as atmospheric concentrations continue to increase globally. Environmentally damaging NH3 levels are expected to severely affect sensitive and economically important organisms, but evidence is lacking in many parts of the world. We describe the design and operation of a wind-controlled NH3 enhancement system to assess effects on forests in two contrasting climates. We established structurally identical NH3 enhancement systems in a temperate birch woodland in the UK and a tropical sub-montane forest in central Sri Lanka, both simulating real-world NH3 pollution conditions. Vertical and horizontal NH3 concentrations were monitored at two different time scales to understand NH3 transport within the forest canopies. We applied a bi-directional resistance model with four canopy layers to calculate net deposition fluxes. At both sites, NH3 concentrations and deposition were found to decrease exponentially with distance away from the source, consistent with expectations. Conversely, we found differences in vertical mixing of NH3 between the two experiments, with more vertically uniform NH3 concentrations in the dense and multi-layered sub-montane forest canopy in Sri Lanka. Monthly NH3 concentrations downwind of the source ranged from 3 to 29 μg m−3 at the UK site and 2–47 μg m−3 at the Sri Lankan site, compared with background values of 0.63 and 0.35 μg m−3, respectively. The total calculated NH3 dry deposition flux to all the canopy layers along the NH3 transects ranged from 12 to 162 kg N ha−1 yr−1 in the UK and 16–426 kg N ha−1 yr−1 in Sri Lanka, representative of conditions in the vicinity of a range of common NH3 sources. This multi-layer model is applicable for identifying the fate of NH3 in forest ecosystems where the gas enters the canopy laterally through the trunk space and exposes the understorey to high NH3 levels. In both study sites, we found that cuticular deposition was the dominant flux in the vegetation layers, with a smaller contribution from stomatal uptake. The new facilities are now allowing the first ever field comparison of NH3 impacts on forest ecosystems, with special focus on lichen bio-indicators, which will provide vital evidence to inform NH3 critical levels and associated nitrogen policy development in South Asia

    Relationships between lichen community composition and concentrations of NO2 and NH3

    No full text
    The relationship between different features of lichen communities in Quercus robur canopies and environmental variables, including concentrations of NO2 and NH3 was investigated. NO2 concentration was the most significant variable, it was positively correlated with the proportion of lichen cover comprising nitrophytes and negatively correlated with total lichen cover. None of the lichen community features were correlated with NH3 concentrations, which were relatively low across the site. Since nitrophytes and nitrophobes are likely to react in opposite directions to nitrogenous compounds, total lichen cover is not a suitable indicator for these pollutants. It is, therefore, suggested that the proportion of lichen cover comprising nitrophytes may be a suitable simple indicator of air quality, particularly in locations where the pollution climate is dominated by oxides of nitrogen

    Modelling relationships between lichen bioindicators, air quality and climate on a national scale : results from the UK OPAL air survey

    No full text
    Air pollution has many negative effects on the natural environment, from changes in plant growth patterns to loss of ecosystem function. This study uses citizen science to investigate national-scale patterns in the distribution and abundance of selected lichen species on tree trunks and branches, and to relate these to air pollution and climate. Volunteers collected data for nine lichen indicators on 19,334 deciduous trees. Submitted data provided information on species-level patterns, and were used to derive composite lichen indices. Multiple linear regression and ANCOVA were used to model the relationships between lichen response variables on Quercus spp. and pollution, climate and location. The study demonstrated significant relationships between patterns in indicator lichens and levels of N- and S-containing pollutants on trunks and twigs. The derived lichen indices show great potential as a tool to provide information on local, site-specific levels of air quality
    corecore