31 research outputs found

    Climate adaptation of interconnected infrastructures: a framework for supporting governance

    Get PDF
    Infrastructures are critical for human society, but vulnerable to climate change. The current body of research on infrastructure adaptation does not adequately account for the interconnectedness of infrastructures, both internally and with one another. We take a step toward addressing this gap through the introduction of a framework for infrastructure adaptation that conceptualizes infrastructures as complex socio-technical “systems of systems” embedded in a changing natural environment. We demonstrate the use of this framework by structuring potential climate change impacts and identifying adaptation options for a preliminary set of cases—road, electricity and drinking water infrastructures. By helping to clarify the relationships between impacts at different levels, we find that the framework facilitates the identification of key nodes in the web of possible impacts and helps in the identification of particularly nocuous weather conditions. We also explore how the framework may be applied more comprehensively to facilitate adaptation governance. We suggest that it may help to ensure that the mental models of stakeholders and the quantitative models of researchers incorporate the essential aspects of interacting climate and infrastructure systems. Further research is necessary to test the framework in these contexts and to determine when and where its application may be most beneficial.Infrastructure Networks Climate Adaptation and Hotspots. Knowledge for Climate Progra

    Energy efficient UV/H2O2 processes for conversion of pharmaceuticals in drinking water: effect of water quality

    Get PDF
    Previous research showed that surface water in the Netherlands may contain significant concentrations of organic micropollutants like pharmaceuticals. A model has been developed which can predict the conversion of a broad range of organic micropollutants in a UV/H2O2 process with low pressure UV lamps. This model also was applied to optimize UV reactors, which were tested at three Dutch locations, including two drinking water companies. It was observed that the model predictions were very accurate, that very high conversion could be obtained, and that the optimized UV reactors resulted in a 30-40% reduced energy demand of the process. Furthermore it was shown that the effect of pretreatment of the water, reducing the DOC content and increasing UV-T values, can improve reactor performance by 30-70%

    Aryl hydrocarbon receptor (AhR) agonists suppress interleukin-6 expression by bone marrow stromal cells: an immunotoxicology study

    Get PDF
    BACKGROUND: Bone marrow stromal cells produce cytokines required for the normal growth and development of all eight hematopoietic cell lineages. Aberrant cytokine production by stromal cells contributes to blood cell dyscrasias. Consequently, factors that alter stromal cell cytokine production may significantly compromise the development of normal blood cells. We have shown that environmental chemicals, such as aromatic hydrocarbon receptor (AhR) agonists, suppress B lymphopoiesis by modulating bone marrow stromal cell function. Here, we extend these studies to evaluate the potential for two prototypic AhR agonists, 7,12-dimethylbenz [a]anthracene (DMBA) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), to alter stromal cell cytokine responses. METHODS: Bone marrow stromal cells were treated with AhR agonists and bacterial lipopolysaccharide (LPS) to mimic innate inflammatory cytokine responses and to study the effects of AhR ligands on those responses. Steady state cytokine RNA levels were screened by RNAse protection assays (RPA) and quantified by real-time PCR. Cytokine (IL-6) protein production was measured by ELISA. NF-κB EMSAs were used to study IL-6 transcriptional regulation. RESULTS: RPAs indicated that AhR(+ )bone marrow stromal cells consistently up-regulated genes encoding IL-6 and LIF in response to LPS, presumably through activation of Toll-like receptor 4. Pre-treatment with low doses of DMBA or TCDD selectively abrogated IL-6 gene induction but had no effect on LIF mRNA. Real-time-PCR indicated a significant inhibition of IL-6 mRNA by AhR ligands within 1 hour of LPS challenge which was reflected in a profound down-regulation of IL-6 protein induction, with DMBA and TCDD suppressing IL-6 levels as much as 65% and 88%, respectively. This potent inhibitory effect persisted for at least 72 hours. EMSAs measuring NF-κB binding to IL-6 promoter sequences, an event known to induce IL-6 transcription, indicated a significant decrease in the LPS-mediated induction of DNA-binding RelA/p50 and c-Rel/p50 heterodimers in the presence of DMBA. CONCLUSIONS: Common environmental AhR agonists can suppress the response to bacterial lipopolysaccharide, a model for innate inflammatory responses, through down-regulation of IL-6, a cytokine critical to the growth of several hematopoietic cell subsets, including early B cells. This suppression occurs at least at the level of IL-6 gene transcription and may be regulated by NF-κB

    Instantaneous transport of a passive scalar in a turbulent separated flow

    Get PDF
    The results of large-eddy simulations of flow and transient solute transport over a backward facing step and through a 180° bend are presented. The simulations are validated successfully in terms of hydrodynamics and tracer transport with experimental velocity data and measured residence time distribution curves confirming the accuracy of the method. The hydrodynamics are characterised by flow separation and subsequent recirculation in vertical and horizontal directions and the solute dispersion process is a direct response to the significant unsteadiness and turbulence in the flow. The turbulence in the system is analysed and quantified in terms of power density spectra and covariance of velocity fluctuations. The injection of an instantaneous passive tracer and its dispersion through the system is simulated. Large-eddy simulations enable the resolution of the instantaneous flow field and it is demonstrated that the instabilities of intermittent large-scale structures play a distinguished role in the solute transport. The advection and diffusion of the scalar is governed by the severe unsteadiness of the flow and this is visualised and quantified. The analysis of the scalar mass transport budget quantifies the mechanisms controlling the turbulent mixing and reveals that the mass flux is dominated by advection
    corecore