153 research outputs found

    Sprayed and sputtered calcium phosphate coatings for medical implants

    No full text

    Clinical and SEM assessment of ART high-viscosity glass-ionomer sealants after 8-13 years in 4 teeth.

    No full text
    Contains fulltext : 79520.pdf (publisher's version ) (Closed access

    Torque test measurement in segmental bone defects using porous calcium phosphate cement implants.

    Get PDF
    Contains fulltext : 87681.pdf (publisher's version ) (Open Access)This study was performed to assess the bone healing supporting characteristics of porous calcium phosphate (Ca-P) cement when implanted in a rabbit segmental defect model as well as to determine the reliability of torque testing as a method to verify bone healing. The middiaphyseal radius was chosen as the area to create bilaterally increasing defect sizes (5, 10, and 15 mm), which were either filled with porous Ca-P cement or left open as a control. After 12 weeks of implantation, torque test measurements as well as histological and radiographic evaluation were performed. In two of the open 15 mm control defects, bone bridging was visible at the radiographic and histological evaluation. Bone was observed to be present in all porous Ca-P cement implants (5, 10, and 15 mm defects) after 12 weeks. No significant differences in torque measurements were observed between the 5 and 10 mm filled and open control defects using a t-test. In addition, the mechanical strength of all operated specimens was similar compared with nonoperated bone samples. The torsion data for the 15 mm open defect appeared to be lower compared with the filled 15 mm defect, but no significant difference could be proven. Within the limitation of the study design, porous Ca-P cement implants demonstrated osteoconductive properties and confirmed to be a suitable scaffold material in a weight-bearing situation. Further, the used torque testing method was found to be unreliable for testing the mechanical properties of the healed bone defect.01 oktober 201

    In vitro growth factor release from injectable calcium phosphate cements containing gelatin microspheres.

    Get PDF
    Contains fulltext : 80288.pdf (publisher's version ) (Open Access)To improve the in vivo resorption of an injectable calcium phosphate cement (CPC) for bone tissue engineering purposes, in previous experiments macroporosity was introduced by the in situ degradation of incorporated gelatin microspheres. Gelatin microspheres are also suitable carriers for osteoinductive drugs/growth factors, where release occurs concomitantly with degradation of the hydrogel. Introduction of these microspheres into CPC can alter the release pattern of the cement, which usually shows a marginal release of incorporated drugs. The goal of this study was to determine the in vitro release characteristics of gelatin microsphere CPC. For this, recombinant human TGF-beta1, bFGF, and BMP-2 were labeled with (125)I and loaded onto gelatin type A (porcine, pI = 7.0-9.0)/type B (bovine, pI = 4.5-5.0) microspheres for a short (instant) and longer (prolonged) time before mixing them with the cement. Radioactivity of the resulting 5 or 10 wt % gelatin microsphere CPC composites was monitored for 6 weeks when subjected to proteolytic medium. Drug-loaded CPC was used as control. Results showed that release pattern/efficiency of gelatin microsphere CPCs and CPC controls was highly dependent on the type of growth factor but unaffected by the amount of growth factor. With gelatin microsphere CPC, release was also dependent on the type of gelatin, total volume of incorporated microspheres, and loading method

    Influence of rapid heating with infrared radiation on RF magnetron-sputtered calcium phosphate coatings

    Get PDF
    Contains fulltext : 26082.PDF (publisher's version ) (Open Access

    The cytocompatibility and early osteogenic characteristics of an injectable calcium phosphate cement.

    Get PDF
    Contains fulltext : 52420.pdf (publisher's version ) (Open Access)In this study, the cytocompatibility and early osteogenic characteristics of rat bone marrow cells (RBMCs) on injectable calcium phosphate (CaP) cement (Calcibon) were investigated. In addition to unmodified CaP cement discs, 2 other treatments were given to the discs: preincubation in MilliQ and sintering at different temperatures. After primary culture, RBMCs were dropwise seeded on the discs and cultured for 12 days. The samples were evaluated in terms of cell viability, morphology (live and dead assays and scanning electron microscopy (SEM)), cell proliferation (deoxyribonucleic acid (DNA) analyses), early cell differentiation (alkaline phosphatase (ALP) activity), and physicochemical analyses (x-ray diffraction (XRD)). The live and dead, DNA, and SEM results showed that Calcibon discs without any additional treatment were not supporting osteoblast-like cells in vitro. There were fewer cells, and cell layers were detached from the disc surface. Therefore, different preincubation periods and sintering temperatures were evaluated to improve the cytocompatibility of the CaP cement. Preincubating discs in MilliQ for periods of 1, 4, 8, and 12 weeks resulted in the hydrolysis of alpha-tri calcium phosphate (TCP) into an apatite-like structure with some beta-TCP, as shown with XRD, but the material was not cytocompatible. Sintering the discs between 800 degrees C and 1100 degrees C resulted in conversion of alpha-TCP to beta-TCP with some hydroxyapatite and an increase in crystallinity. Eventually, the discs sintered at 1100 degrees C achieved better cell attachment, more-abundant cell proliferation, and earlier differentiation than other sintered (600 degrees C, 800 degrees C, and 1000 degrees C), preincubated, and unmodified specimens. On basis of our results, we conclude that in vivo results with CaP-based cements do not guarantee in vitro applicability. Furthermore, unmodified Calcibon is not cytocompatible in vitro, although preincubation of the material results in a more-favorable cell response, sintering of the material at 1100 degrees C results in the best osteogenic properties. In contrast to in vivo studies, the Calcibon CaP cement is not suitable as a scaffold for cell-based tissue-engineering strategies

    Formation and characteristics of the apatite layer on plasma-sprayed hydroxyapatite coatings in simulated body fluid

    Get PDF
    Contains fulltext : 25880.PDF (publisher's version ) (Open Access

    Ceramic composites as matrices and scaffolds for drug delivery in tissue engineering.

    No full text
    Contains fulltext : 53096.pdf (publisher's version ) (Closed access)Ceramic composites and scaffolds are popular implant materials in the field of dentistry, orthopedics and plastic surgery. For bone tissue engineering especially CaP-ceramics or cements and bioactive glass are suitable implant materials due to their osteoconductive properties. In this review the applicability of these ceramics but also of ceramic/polymer composites for bone tissue engineering is discussed, and in particular their use as drug delivery systems. Overall, the high density and slow biodegradability of ceramics is not beneficial for tissue engineering purposes. To address these issues, macroporosity can be introduced often in combination with osteoinductive growth factors and cells. Ceramics are good carriers for drugs, in which release patterns are strongly dependent on the chemical consistency of the ceramic, type of drug and drug loading. Biodegradable polymers like polylactic acid, gelatin or chitosan are used as matrices for ceramic particles or as adjuvant to calcium phosphate cements. The use of these polymers can introduce a tailored biodegradation/drug release to the ceramic material
    • …
    corecore