4 research outputs found

    Evaluation of dark etching regions for standard bearing steel under accelerated rolling contact fatigue

    Get PDF
    Subsurface microstructural alterations are formed in the later stages of rolling contact fatigue (RCF) under high contact pressure. The subsurface changes observed as a dark contrast under optical microscopy are classified as Dark Etching Regions (DERs). Despite the fact that DERs have been presented for several decades, the understanding of its development and growth is yet to comprehend. Current research employed a modified high-speed microprocessor rotary tribometer to conduct systematic RCF study under accelerated testing conditions with variable temperatures and contact pressures. Comprehensive RCF data has been acquired, analysed and is reported for the very first time with ball-on-ball point contact loading conditions. The subsurface microscopic investigations have shown the ongoing progression and development of DER extent and are reported to be associated with the accumulation of plasticity during RCF. The comparison of the DER with the responsible stress components have revealed that DER formation is more closely related to the von Mises stresses when superposed with residual stresses. The experimentally observed area fraction of dark etching zones has been evaluated in terms of DER% and compared with the dislocation assisted carbon diffusion model for DER formation. The overprediction of the numerical model in comparison with the presented results in current research manifests its limitations which can be improved with the incorporation of cyclic plasticity governed by evolved von Mises stresses. Detailed evaluated DER results are presented as 3D DER% maps incorporating the combined effects of contact stress, temperature and rolling cycles simultaneously which enables an in-depth RCF understanding within microstructural context and therefore can be used as guidelines for DER formation models

    A 3D finite element model of rolling contact fatigue for evolved material response and residual stress estimation

    Get PDF
    Rolling bearing elements develop structural changes during rolling contact fatigue (RCF) along with the non-proportional stress histories, evolved residual stresses and extensive work hardening. Considerable work has been reported in the past few decades to model bearing material hardening response under RCF; however, they are mainly based on torsion testing or uniaxial compression testing data. An effort has been made here to model the RCF loading on a standard AISI 52100 bearing steel with the help of a 3D Finite Element Model (FEM) which employs a semi-empirical approach to mimic the material hardening response evolved during cyclic loadings. Standard bearing balls were tested in a rotary tribometer where pure rolling cycles were simulated in a 4-ball configuration. The localised material properties were derived from post-experimental subsurface analysis with the help of nanoindentation in conjunction with the expanding cavity model. These constitutive properties were used as input cyclic hardening parameters for FEM. Simulation results have revealed that the simplistic power-law hardening model based on monotonic compression test underpredicts the residual generation, whereas the semi-empirical approach employed in current study corroborated well with the experimental findings from current research work as well as literature cited. The presence of high compressive residual stresses, evolved over millions of RCF cycles, showed a significant reduction of maximum Mises stress, predicting significant improvement in fatigue life. Moreover, the predicted evolved flow stresses are comparable with the progression of subsurface structural changes and be extended to develop numerical models for microstructural alterations

    Development of white etching bands under accelerated rolling contact fatigue

    Get PDF
    Bearing steel under severe loading condition undergoes substantial subsurface microstructural alterations known as Dark etching regions and white etching bands. White etching bands (WEBs) develop after hundreds of millions of stress cycles in bearing components and have been reported for several decades but the formation mechanism of white bands is not fully elucidated. Current research presents a systematic rolling contact fatigue (RCF) testing in a rotary tribometer under accelerated conditions, where rolling cycles are simulated in a 4-ball test configuration. The post RCF investigations have been carried out to understand the formation mechanism of WEBs in a ball-on-ball point contact load. WEBs have been characterised with the help of nanoindentation and Energy-dispersive X-ray spectroscopy analysis. The quantitative analysis of WEBs growth with subsurface stress field has revealed that the unique orientations of white bands are governed by the plane of maximum relative normal stress along the contact track. Moreover, the accelerated growth and reversal of WEBs sequence at elevated temperature have revealed that the WEBs formation is dependent on temperature/load combination. The observed growth of lenticular carbides in current research is also compared with dislocation gliding model and the role of carbon diffusion within WEBs is highlighted
    corecore