15 research outputs found
E-retailing ethics in Egypt and its effect on customer repurchase intention
The theoretical understanding of online shopping behaviour has received much attention. Less focus has been given to the formation of the ethical issues that result from online shopper interactions with e-retailers. The vast majority of earlier research on this area is conceptual in nature and limited in scope by focusing on consumers’ privacy issues. Therefore, the purpose of this paper is to propose a theoretical model explaining what factors contribute to online retailing ethics and its effect on customer repurchase intention. The data were analysed using variance-based structural equation modelling, employing partial least squares regression. Findings indicate that the five factors of the online retailing ethics (security, privacy, non- deception, fulfilment/reliability, and corporate social responsibility) are strongly predictive of online consumers’ repurchase intention. The results offer important implications for e-retailers and are likely to stimulate further research in the area of e-ethics from the consumers’ perspective
Identification of genetic determinants of a tick-borne flavivirus associated with host-specific adaptation and pathogenicity
AbstractTick-borne flaviviruses are maintained in nature in an enzootic cycle involving a tick vector and a vertebrate host. Thus, the virus replicates in two disparate hosts, each providing selective pressures that can influence virus replication and pathogenicity. To identify viral determinants associated with replication in the individual hosts, plaque purified Langat virus (TP21pp) was adapted to growth in mouse or tick cell lines to generate two virus variants, MNBp20 and ISEp20, respectively. Virus adaptation to mouse cells resulted in four amino acid changes in MNBp20 relative to TP21pp, occurring in E, NS4A and NS4B. A comparison between TP21pp and ISEp20 revealed three amino acid modifications in M, NS3 and NS4A of ISEp20. ISEp20, but not MNBp20, was attenuated following intraperitoneal inoculation of mice. Following isolation from mice brains, additional mutations reproducibly emerged in E and NS3 of ISEp20 that were possibly compensatory for the initial adaptation to tick cells. Thus, our data implicate a role for E, M, NS3, NS4A and NS4B in host adaptation and pathogenicity of tick-borne flaviviruses
Three-Dimensional Structure of Aleutian Mink Disease Parvovirus: Implications for Disease Pathogenicity
The three-dimensional structure of expressed VP2 capsids of Aleutian mink disease parvovirus strain G (ADV(G-VP2)) has been determined to 22 Å resolution by cryo-electron microscopy and image reconstruction techniques. A structure-based sequence alignment of the VP2 capsid protein of canine parvovirus (CPV) provided a means to construct an atomic model of the ADV(G-VP2) capsid. The ADV(G-VP2) reconstruction reveals a capsid structure with a mean external radius of 128 Å and several surface features similar to those found in human parvovirus B19 (B19), CPV, feline panleukopenia virus (FPV), and minute virus of mice (MVM). Dimple-like depressions occur at the icosahedral twofold axes, canyon-like regions encircle the fivefold axes, and spike-like protrusions decorate the threefold axes. These spikes are not present in B19, and they are more prominent in ADV compared to the other parvoviruses owing to the presence of loop insertions which create mounds near the threefold axes. Cylindrical channels along the fivefold axes of CPV, FPV, and MVM, which are surrounded by five symmetry-related β-ribbons, are closed in ADV(G-VP2) and B19. Immunoreactive peptides made from segments of the ADV(G-VP2) capsid protein map to residues in the mound structures. In vitro tissue tropism and in vivo pathogenic properties of ADV map to residues at the threefold axes and to the wall of the dimples
The NS5 Protein of the Virulent West Nile Virus NY99 Strain Is a Potent Antagonist of Type I Interferon-Mediated JAK-STAT Signalingâ–ż
Flaviviruses transmitted by arthropods represent a tremendous disease burden for humans, causing millions of infections annually. All vector-borne flaviviruses studied to date suppress host innate responses to infection by inhibiting alpha/beta interferon (IFN-α/β)-mediated JAK-STAT signal transduction. The viral nonstructural protein NS5 of some flaviviruses functions as the major IFN antagonist, associated with inhibition of IFN-dependent STAT1 phosphorylation (pY-STAT1) or with STAT2 degradation. West Nile virus (WNV) infection prevents pY-STAT1 although a role for WNV NS5 in IFN antagonism has not been fully explored. Here, we report that NS5 from the virulent NY99 strain of WNV prevented pY-STAT1 accumulation, suppressed IFN-dependent gene expression, and rescued the growth of a highly IFN-sensitive virus (Newcastle disease virus) in the presence of IFN, suggesting that this protein can function as an efficient IFN antagonist. In contrast, NS5 from Kunjin virus (KUN), a naturally attenuated subtype of WNV, was a poor suppressor of pY-STAT1. Mutation of a single residue in KUN NS5 to the analogous residue in WNV-NY99 NS5 (S653F) rendered KUN NS5 an efficient inhibitor of pY-STAT1. Incorporation of this mutation into recombinant KUN resulted in 30-fold greater inhibition of JAK-STAT signaling than with the wild-type virus and enhanced KUN replication in the presence of IFN. Thus, a naturally occurring mutation is associated with the function of NS5 in IFN antagonism and may influence virulence of WNV field isolates
Chimeric Tick-Borne Encephalitis/Dengue Virus Is Attenuated in Ixodes scapularis Ticks and Aedes aegypti Mosquitoes
In an effort to derive an efficacious live attenuated vaccine against tick-borne encephalitis, we generated a chimeric virus bearing the structural protein genes of a Far Eastern subtype of tick-borne encephalitis virus (TBEV) on the genetic background of recombinant dengue 4 (DEN4) virus. Introduction of attenuating mutations into the TBEV envelope protein gene, as well as the DEN4 NS5 protein gene and 3′ noncoding region in the chimeric genome, results in decreased neurovirulence and neuroinvasiveness in mice, and restricted replication in mouse brain. Since TBEV and DEN4 viruses are transmitted in nature by ticks and mosquitoes, respectively, it was of interest to investigate the infectivity of the chimeric virus for both arthropod vectors. Therefore, parental and chimeric viruses were tested for growth in mosquito and tick cells and for oral infection in vivo. Although all chimeric viruses demonstrated moderate levels of replication in C6/36 mosquito cells, they were unable to replicate in ISE6 tick cells. Further, the chimeric viruses were unable to infect or replicate in Aedes aegypti mosquitoes and Ixodes scapularis tick larvae. The poor infectivity for both potential vectors reinforces the safety of chimeric virus-based vaccine candidates for the environment and for use in humans