197 research outputs found

    Thermoelectric properties of Sr_3GaSb_3 – a chain-forming Zintl compound

    Get PDF
    Inspired by the promising thermoelectric properties in the Zintl compounds Ca_3AlSb_3 and Ca_5Al_2Sb_6, we investigate here the closely related compound Sr_3GaSb_3. Although the crystal structure of Sr_3GaSb_3 contains infinite chains of corner-linked tetrahedra, in common with Ca_3AlSb_3 and Ca_5Al_2Sb_6, it has twice as many atoms per unit cell (N = 56). This contributes to the exceptionally low lattice thermal conductivity (κ_L = 0.45 W m^(−1) K^(−1) at 1000 K) observed in Sr_3GaSb_3 samples synthesized for this study by ball milling followed by hot pressing. High temperature transport measurements reveal that Sr_3GaSb_3 is a nondegenerate semiconductor (consistent with Zintl charge-counting conventions) with relatively high p-type electronic mobility (~ 30 cm^2 V^(−1) s^(−1) at 300 K). Density functional calculations yield a band gap of ~ 0.75 eV and predict a light valence band edge (~ 0.5 me), in qualitative agreement with experiment. To rationally optimize the electronic transport properties of Sr_3GaSb_3 in accordance with a single band model, doping with Zn^(2+) on the Ga^(3+) site was used to increase the p-type carrier concentration. In optimally hole-doped Sr_3Ga_(1−x)Zn_xSb_3 (x = 0.0 to 0.1), we demonstrate a maximum figure of merit of greater than 0.9 at 1000 K

    Thermoelectric properties of Zn-doped Ca_(3)AlSb_(3)

    Get PDF
    Polycrystalline samples of Ca_(3)Al_(1)−_(x)Zn_(x)Sb_(3), with x = 0.00, 0.01, 0.02, and 0.05 were synthesized via a combined ball milling and hot pressing technique and the influence of zinc as a dopant on the thermoelectric properties was studied and compared to the previously reported transport properties of sodium-doped Ca_(3)AlSb_(3). Consistent with the transport in the sodium-doped material, substitution of aluminum with zinc leads to p-type carrier conduction that can be sufficiently explained with a single parabolic band model. It is found that, while exhibiting higher carrier mobilities, the doping effectiveness of zinc is lower than that of sodium and the optimum carrier concentration for a maximum figure of merit zT is not reached in this study. We find that the grain size influences the carrier mobility, carrier concentration, and lattice thermal conductivity, leading to improved properties at intermediate temperatures, and highlighting a possible approach for improved figures of merit in this class of materials

    Polypropylene-based melt mixed composites with singlewalled carbon nanotubes for thermoelectric applications: Switching from p-type to n-type by the addition of polyethylene glycol

    Get PDF
    The thermoelectric properties of melt processed conductive nanocomposites consisting of an insulating polypropylene (PP) matrix filled with singlewalled carbon nanotubes (CNTs) and copper oxide (CuO) were evaluated. An easy and cheap route to switch p-type composites into n-type was developed by adding polyethylene glycol (PEG) during melt mixing. At the investigated CNT concentrations of 0.8 wt% and 2 wt% (each above the electrical percolation threshold of ∼0.1 wt%), and a fixed CuO content of 5 wt%, the PEG addition converted p-type composites (positive Seebeck coefficient (S)) into n-type (negative S). PEG was also found to improve the filler dispersion inside the matrix. Two composites were prepared: P-type polymer/CNT composites with high S (up to 45 μV/K), and n-type composites (with S up to −56 μV/K) through the addition of PEG. Two prototypes with 4 and 49 thermocouples of these p- and n-type composites were fabricated, and delivered an output voltage of 21 mV and 110 mV, respectively, at a temperature gradient of 70 K

    Effect of Isovalent Substitution on the Thermoelectric Properties of the Cu_2ZnGeSe_(4−x)S_x Series of Solid Solutions

    Get PDF
    Knowledge of structure–property relationships is a key feature of materials design. The control of thermal transport has proven to be crucial for the optimization of thermoelectric materials. We report the synthesis, chemical characterization, thermoelectric transport properties, and thermal transport calculations of the complete solid solution series Cu_2ZnGeSe_(4–x)S_x (x = 0–4). Throughout the substitution series a continuous Vegard-like behavior of the lattice parameters, bond distances, optical band gap energies, and sound velocities are found, which enables the tuning of these properties adjusting the initial composition. Refinements of the special chalcogen positions revealed a change in bonding angles, resulting in crystallographic strain possibly affecting transport properties. Thermal transport measurements showed a reduction in the room-temperature thermal conductivity of 42% triggered by the introduced disorder. Thermal transport calculations of mass and strain contrast revealed that 34% of the reduction in thermal conductivity is due to the mass contrast only and 8% is due to crystallographic strain

    A Fast and Sustainable Route to Bassanite Nanocrystals from Gypsum

    Get PDF
    Calcium sulfate is an important construction material. More than 1600 million square meters of interior surfaces are covered with plasterboards in Europe each year. Plasterboard is manufactured by transforming mined or recycled gypsum (CaSO4 × 2 H2O) to bassanite (CaSO4 × ½H2O) in a time- and energy-consuming heating process. A fast and sustainable way to produce bassanite by solvent-assisted milling, thereby eliminating the need for energy-intensive dehydration, is described. The milling reaction is complete after ≈200 min. Kinetic studies revealed that gypsum crystals transform to bassanite by shear forces during milling. 1H nuclear magnetic resonance (NMR) spectroscopic techniques and Fourier-transform infrared spectroscopy (FT-IR) show that the resulting bassanite nanocrystals are stabilized by surface functionalization with the auxiliary solvent methanol. Bassanite particles produced over extended milling times of 990 min form long-term stable dispersions without stabilizers and no signs of precipitation. Addition of water to bassanite leads to instant agglomeration, followed by a phase change to gypsum. The dispersibility in volatile methanol and the elucidation of the crystallization mechanism allow also for applications of the bassanite nanocrystals in hybrid materials. © 2022 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH

    Band convergence in the non-cubic chalcopyrite compounds Cu_2MGeSe_4

    Get PDF
    Inspired by recent theoretical predictions on band convergence in the tetragonal chalcopyrite compounds, we have explored the influence of the crystal structure on the transport and bandstructure of different quaternary chalcopyrites. In theory, a changing lattice parameter ratio of c/2a towards unity should lead to band convergence due to a more cubic and higher symmetry structure. In accordance with this prediction, the different solid solutions explored in this manuscript show a significant impact on the electronic transport depending on the ratio of the lattice parameters. An increasing lattice parameter ratio results in an increase of the carrier effective masses which can be explained by converging bands, ultimately leading to an increase of the power factor and thermoelectric figure of merit in the class of non-cubic chalcopyrite compounds Cu_2MGeSe_4. However, the calculations via density functional theory show that the critical value of c/2a, where band convergence occurs, will be different from unity due to symmetry and chemical influences on the band structure

    Highly water-soluble magnetic iron oxide (Fe3O4) nanoparticles for drug delivery: enhanced in vitro therapeutic efficacy of doxorubicin and MION conjugates

    Get PDF
    We report a simple one step protocol for the preparation of fairly monodisperse and highly water-soluble magnetic iron oxide nanoparticles (MIONs) through a co-precipitation method using a novel multifunctional, biocompatible and water-soluble polymer ligand dodecanethiol-polymethacrylic acid (DDT-PMAA). DDT-PMAA owing to its several intrinsic properties, not only efficiently controls the size of the MIONs but also gives them excellent water solubility, long time stability against aggregation and oxidation, biocompatibility and multifunctional surface rich in thioether and carboxylic acid groups. The molecular weight and concentration of the polymer ligand were optimized to produce ultrasmall (4.6 +/- 0.7 nm) MIONs with high magnetization (50 emu g(-1)). The MIONs obtained with 1.5 mM DDT-PMAA (5330 g mol(-1)) are highly stable in solution as well as in dry powder form for an extended period of time. These MIONs show a high degree of monodispersity and are superparamagnetic at room temperature. The polymer ligand and MIONs@Polymer were characterized by GPC, H-1 NMR, DLS, TEM, FTIR-Raman, XRD, TGA and VSM. In order to demonstrate the bio-applications of these magnetic nanoparticles (NPs), their toxicity was determined by MTT assay and they were found to be non-toxic and biocompatible. Finally, MIONs were conjugated with the anti-cancer drug doxorubicin (DOX) and its efficacy, as a model drug delivery system, was determined using HepG2 cells. The efficiency of the drug-NP conjugates i.e., covalently bound DOX-MIONs and electrostatically loaded DOX/MIONs, was found to be significantly higher than that of the free drug (DOX)

    Phonon Scattering through a Local Anisotropic Structural Disorder in the Thermoelectric Solid Solution Cu_2Zn_(1−x)Fe_xGeSe_4

    Get PDF
    Inspired by the promising thermoelectric properties of chalcopyrite-like quaternary chalcogenides, here we describe the synthesis and characterization of the solid solution Cu_2Zn_(1–x)Fe_xGeSe_4. Upon substitution of Zn with the isoelectronic Fe, no charge carriers are introduced in these intrinsic semiconductors. However, a change in lattice parameters, expressed in an elongation of the c/a lattice parameter ratio with minimal change in unit cell volume, reveals the existence of a three-stage cation restructuring process of Cu, Zn, and Fe. The resulting local anisotropic structural disorder leads to phonon scattering not normally observed, resulting in an effective approach to reduce the lattice thermal conductivity in this class of materials

    Bond strength dependent superionic phase transformation in the solid solution series Cu_2ZnGeSe_(4-x)S_x

    Get PDF
    Recently, copper selenides have shown to be promising thermoelectric materials due to their possible superionic character resulting from mobile copper cations. Inspired by this recent development in the class of quaternary copper selenides we have focused on the structure-to-property relationships in the solid solution series Cu_2ZnGeSe_(4-x)S_x. The material exhibits an insulator-to-metal transition at higher temperatures, with a transition temperature dependent on the sulfur content. However, the lattice parameters show linear thermal expansion at elevated temperatures only and therefore no indication of a structural phase transformation. ^(63)Cu nuclear magnetic resonance shows clear indications of Cu located on at least two distinct sites, which eventually merge into one (apparent) site above the phase transformation. In this manuscript the temperature dependent lattice parameters and electronic properties of the solid solution Cu_2ZnGeSe_(4-x)S_x are reported in combination with ^(63)Cu NMR, and an attempt will be made to relate the nature of the electronic phase transformation to a superionic phase transformation and a changing covalent character of the lattice upon anion substitution in this class of materials
    • …
    corecore